Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (2): 18-29    DOI: 10.13523/j.cb.20180204
Orginal Article     
Clone and Functional Identification of Cinnamoyl CoA Reductase Genes from Caragana intermedia
Kun LIU,Shuang CUI,Fei-yun YANG,Xiao-dong HAN,Rui-gang WANG,Zi-yi ZHANG()
College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
Download: HTML   PDF(3010KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cinnamoyl-CoA reductaseis the first rate limiting emzyme which catalyzes the biosynthesis of lignin and plays an important role in lignin biosynthesis. Two cinnamoyl-CoA reductase encoding genes, CiCCR2 and CiCCR3, were cloned from Caragana intermedia through PCR. The open reading frame(ORF) of CiCCR2 is 897bp which encoding 299 amino acids, and ORF of CiCCR3 is 966bp, which encoding 322 amino acids. Quantification assay and Histochemical staining showed that the lignin content increased by overexpressing of CiCCR2 and CiCCR3 in Arabidopsis compared with the wild type during both seedling and mature stages. At the same time, the fresh and dry weight of overexpressing plants were higher than that of the wild type.



Key wordsCinnamoyl-CoA reductase      Clone      Lignin      Caragana intermedia     
Received: 19 September 2017      Published: 21 March 2018
ZTFLH:  Q819  
Cite this article:

Kun LIU,Shuang CUI,Fei-yun YANG,Xiao-dong HAN,Rui-gang WANG,Zi-yi ZHANG. Clone and Functional Identification of Cinnamoyl CoA Reductase Genes from Caragana intermedia. China Biotechnology, 2018, 38(2): 18-29.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180204     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I2/18

引物名称 Primer name 引物序列Primer sequence (5'→3')
F-CiCCR2-oe GTCGAC(Sal I)ATGGCACCTTCTTTCGACAT
R-CiCCR2-oe GAGCTC(Sac I)GAACAGCTAAGGTTATTGCCC
F-CiCCR3-oe GTCGAC(Sal I)ATGGCAACAAGTGGGGAAGG
R-CiCCR3-oe ACTAGT(Spe I)AACATTGGCAAGTCCAGTCTGTG
F-CiCCR2-q CTGTCGCAAATTCAAGTTATGGC
R-CiCCR2-q CAGCAGCTCCTCTCAAGTAAGGGT
F-CiCCR3-q AAACACAGGCCACTGGAGGAA
R-CiCCR3-q TGACATTTATTTTGAATCGAAGAGACC
qCiEF1αF TGGGTGGGACATTCTCTGATT
qCiEF1αR GCACGGTTCACTTCTTCTTAGC
qAtEF1αF AGAAGGGTGCCAAATGATGAG
qAtEF1αR GGAGGGAGAGAGAAAGTCACAGA
Table 1 Primers used in this study
Fig.1 Amplification results of cDNA of CiCCR2 and CiCCR3 (a)CiCCR2 cDNA (b)CiCCR3 Cdna M: Fermentas GeneRuler TM 1kb DNA Ladder
Fig.2 Multiple alignment of CiCCR2 and CiCCR3 along with other species CCR proteinsThe box indicates the conserved domain; the underline indicates the catalytic site of CCR
Fig.3 The phylogenetic analysis of CiCCR2 and CiCCR3 with other species CCRsThe phylogenetic tree is constructed by the neighbor-joining method. Bootstrap values based on 1 000 replications
Fig.4 The expression level of CiCCR2 and CiCCR3 in Caragana intermedia assayed by real-time quantitative PCR(a)CiCCR2 (b)CiCCR3 Reference gene was CiEF1α. The result was calculated by 2-ΔCT
Fig.5 Identification by double digestion of CiCCR2 and CiCCR3 over-expression binary vector(a) Identification by double digestion of CiCCR2 M:TaKaRa DL5000 Marker; 1: Vector control; 2: Digest with Sal I and Sac I (b)Identification by double digestion of CiCCR3 M:TaKaRa DL5000 Marker; 3: Vector control; 4: Digest with Sal I and Spe I
 
Fig.6 The expression level of CiCCR2 and CiCCR3 in transgenic lines assayed by real-time quantitative PCR(a)CiCCR2 (b)CiCCR3 Reference gene was AtEF1α. The result was calculated by 2-ΔCT
Fig.7 Weight of the CiCCR2 and CiCCR3 transgenic lines and wild-type Arabidopsis thaliana(a)and(c)for fresh weight;(b)and(d)for dry weight
Fig.8 Standard curve of lignin content
Fig.9 Content of lignin in CiCCR2 and CiCCR3 transgenic lines and wild-type A.thaliana(a)and(c)for young seedlings; (b)and(d)for mature seedlings
Fig.10 Histochemical staining of the CiCCR2 transgenic lines and wild-type Arabidopsis thalianaXY: Xylem; PH: Phloem
Fig.11 Histochemical staining of the CiCCR3 transgenic lines and wild-type Arabidopsis thaliana XY: Xylem; PH: Phloem
[1]   Ghosh R, Choi B, Cho B K , et al. Characterization of developmental- and stress-mediated expression of cinnamoyl-CoA reductase in kenaf (Hibiscus cannabinus L.). The Scientific World Journal, 2014,2014:601845.
doi: 10.1155/2014/601845 pmid: 24723816
[2]   Boerjan W, Ralph J, Baucher M . Lignin biosynthesis. Annual Review of Plant Biology, 2003,54(1):519-546.
doi: 10.1146/annurev.arplant.54.031902.134938
[3]   李伟, 熊谨, 陈晓阳 . 木质素代谢的生理意义及其遗传控制研究进展. 西北植物学报, 2003,23(4):675-681.
doi: 10.3321/j.issn:1000-4025.2003.04.032
[3]   Li W, Xiong J, Chen X Y . Advances in the research of physiological significances and genetic regulation of lignin metabolism. Acta Botanica Boreali-Occidentalia Sinica, 2003,23(4):675-681.
doi: 10.3321/j.issn:1000-4025.2003.04.032
[4]   Bhuiyan N H, Selvaraj G, Wei Y , et al. Role of lignification in plant defense. Plant Signaling & Behavior, 2009,4(2):158.
[5]   Weng J K, Chapple C . The origin and evolution of lignin biosynthesis. New Phytologist, 2010,187(2):273-285.
doi: 10.1111/j.1469-8137.2010.03327.x pmid: 20642725
[6]   Zhong R, Morrison W H, Himmelsbach D S , et al. Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar pants. Plant Physiology, 2000,124(2):563-578.
doi: 10.1104/pp.124.2.563
[7]   Ragauskas A J, Beckham G T, Biddy M J , et al. Lignin valorization: improving lignin processing in the biorefinery. Science, 2014,344(6185):1246843.
doi: 10.1126/science.1246843 pmid: 24833396
[8]   Tang W, Tang A Y . Transgenic woody plants for biofuel. Journal of Forestry Research, 2014,( 2):225-236.
doi: 10.1007/s11676-014-0454-1
[9]   Van D J . Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant Journal for Cell & Molecular Biology, 1997,11(3):429-441.
[10]   Weia L I, Tan X F, Chen H P . Structure,function and application potential of cinnamoyl-CoA reductase(CCR) gene in plant. Nonwood Forest Research, 2009,27(1):7-12.
[11]   Mansell R L, St?ckigt J, Zenk M H . Reduction of ferulic acid to coniferyl alcohol in a cell free system from a higher plant. Zeitschrift Für Pflanzenphysiologie, 1972,68(3):286-288.
doi: 10.1016/S0044-328X(72)80063-1
[12]   Kawasaki T, Koita H, Nakatsubo T , et al. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(1):230-235.
doi: 10.1073/pnas.0509875103 pmid: 16380417
[13]   Lauvergeat V, Lacomme C, Lacombe E , et al. Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry, 2001,57(7):1187-1195.
doi: 10.1016/S0031-9422(01)00053-X
[14]   Zhou R, Jackson L, Shadle G , et al. Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(41):17803-17808.
doi: 10.1073/pnas.1012900107 pmid: 20876124
[15]   Mir Derikvand M, Sierra J B, Ruel K , et al. Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1. Planta, 2008,227(5):943-956.
doi: 10.1007/s00425-007-0669-x
[16]   Piquemal J, Lapierre C, Myton K , et al. Down-regulation of Cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant Journal, 1998,13(1):71-83.
doi: 10.1046/j.1365-313X.1998.00014.x
[17]   Dauwe R, Morreel K, Goeminne G , et al. Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant Journal, 2007,52(2):263-285.
doi: 10.1111/j.1365-313X.2007.03233.x pmid: 17727617
[18]   Leplé J C, Dauwe R, Morreel K , et al. Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. The Plant Cell, 2007,19(11):3669-3691.
doi: 10.1105/tpc.107.054148 pmid: 18024569
[19]   Jones L, Ennos A R, Turner S R . Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. The Plant Journal: for Cell and Molecular Biology, 2001,26(2):205-216.
doi: 10.1046/j.1365-313x.2001.01021.x
[20]   Laskar D D, Jourdes M, Patten A M , et al. The Arabidopsis cinnamoyl CoA reductase irx4 mutant has a delayed but coherent (normal) program of lignification. The Plant journal : for Cell and Molecular Biology, 2006,48(5):674-686.
doi: 10.1111/j.1365-313X.2006.02918.x pmid: 17092316
[21]   Patten A M, Cardenas C L, Cochrane F C , et al. Reassessment of effects on lignification and vascular development in the irx4 Arabidopsis mutant. Phytochemistry, 2005,66(17):2092-2107.
doi: 10.1016/j.phytochem.2004.12.016 pmid: 16153410
[22]   Han X, Feng Z, Xing D , et al. Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis. BMC Plant Biology, 2015,15(1):208.
doi: 10.1186/s12870-015-0591-5 pmid: 4546137
[23]   路静, 杨万政, 王捷 , 等. 蒙药锦鸡儿的研究进展. 中国民族医药杂志, 2010,16(4):56-59.
[23]   Lu J, Yang W Z, Wang J , et al. The progress of chemistry and pharmacology of Caragana. Journal of Medicine & Pharmacy of Chinese Minorities, 2010,16(4):56-59.
[24]   杨杞, 张涛, 王颖 , 等. 干旱胁迫下柠条锦鸡儿叶片SSH文库构建及CkWRKY1基因克隆. 林业科学, 2013,49(7):62-68.
doi: 10.11707/j.1001-7488.20130709
[24]   Yang Q, Zhang T, Wang Y , et al. Construction of a suppression subtractive hybridization library of Caragana korshinskii under drought stress and cloning of CkWRKY1 gene. Scientia Silvae Sinicae, 2013,49(7):62-68.
doi: 10.11707/j.1001-7488.20130709
[25]   韩晓敏 . 中间锦鸡儿3个非生物胁迫相关转录因子的克隆与功能分析. 呼和浩特:内蒙古农业大学, 生命科学学院, 2015.
[25]   Han X M . The cloning and analysis of three stress-related transcription factors from Caragana intermedia,Hohhot:Inner Mongolia Agriculture University, College of Life Sciences, 2015.
[26]   魏丽丽 . 过表达柠条锦鸡儿CkDREB1基因的拟南芥抗旱和抗冷的机理分析. 呼和浩特:内蒙古农业大学, 生命科学学院, 2013.
[26]   Wei L L . Mechanism analysis of cold and drought tolerance of the transgenic Arabidopsis overexpressing DREB1 from Caragana korshinskii kom. Hohhot: Inner Mongolia Agricultural University, College of Life Sciences, 2013.
[27]   Carugo O, Argos P . NADP-dependent enzymes. I: Conserved stereochemistry of cofactor binding. Proteins-structure Function & Bioinformatics, 1997,28(1):10-28.
[28]   Filling C, Berndt K D, Benach J , et al. Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. Journal of Biological Chemistry, 2002,277(28):25677-25684.
doi: 10.1074/jbc.M202160200 pmid: 11976334
[29]   Pan H, Zhou R, Louie G V , et al. Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis. Plant Cell, 2014,26(9):3709-3727.
doi: 10.1105/tpc.114.127399 pmid: 25217505
[30]   刘晓晶, 崔浪军, 夏飞 , 等. 拟南芥肉桂酰辅酶A还原酶(AtCCR1/2)基因的生物信息学分析. 陕西师范大学学报(自然科学版), 2011,39(3):67-72.
[30]   Liu X J, Cui L J, Xia F , et al. Bioinformatic analysis of cinnamoyl CoA reductase(AtCCR1/2)gene from Arabidopsis thaliana. Journal of Shaanxi Normal University (Natural Science Edition), 2011,39(3):67-72.
[31]   唐映红 . 苎麻木质素合成关键酶4CL和CCR基因cDNA序列的克隆与表达分析. 长沙:湖南农业大学, 2015.
[31]   Tang Y H . The cDNA cloning and expression analysis of key enzyme 4CL and CCR gene in ligninsynthesis pathway of Boehmeria nivea. Changsha: Hunan Agricultural University, 2015.
[32]   Pichon M, Courbou I, Beckert M , et al. Cloning and characterization of two maize cDNAs encoding cinnamoyl-CoA reductase (CCR) and differential expression of the corresponding genes. Plant Molecular Biology, 1998,38(4):671-676.
doi: 10.1023/A:1006060101866 pmid: 9747812
[33]   Lacombe E, Hawkins S, Van Doorsselaere J , et al. Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. The Plant Journal : for Cell and Molecular Biology, 1997,11(3):429-441.
doi: 10.1046/j.1365-313X.1997.11030429.x
[34]   Raes J, Rohde A, Christensen J H , et al. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiology, 2003,133(8):1051.
doi: 10.1104/pp.103.026484 pmid: 14612585
[35]   Hu Y, Di P, Chen J , et al. Isolation and characterization of a gene encoding cinnamoyl-CoA reductase from Isatis indigotica Fort. Molecular Biology Reports, 2011,38(3):2075-2083.
doi: 10.1007/s11033-010-0333-6 pmid: 20859691
[36]   Cheng H , Characterization of a cinnamoyl-CoA reductase gene in Ginkgo biloba: Effects on lignification and environmental stresses. African Journal of Biotechnology, 2012,11(26):6780-6794.
doi: 10.5897/AJB11.3704
[37]   Koutaniemi S, Warinowski T, K?rk?nen A , et al. Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR. Plant Molecular Biology, 2007,65(3):311-328.
doi: 10.1007/s11103-007-9220-5 pmid: 17764001
[38]   Barakat A, Yassin N B, Park J S , et al. Comparative and phylogenomic analyses of cinnamoyl-CoA reductase and cinnamoyl-CoA-reductase-like gene family in land plants. Plant Science, 2011,181(3):249-257.
doi: 10.1016/j.plantsci.2011.05.012 pmid: 21763535
[39]   Goujon T, Ferret V, Mila I , et al. Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta, 2003,217(2):218-228.
doi: 10.1007/s00425-003-0987-6 pmid: 12783329
[40]   Tamasloukht B, Lam W, Martinez Y , et al. Characterization of a cinnamoyl-CoA reductase 1 (CCR1) mutant in maize: effects on lignification, fibre development, and global gene expression. Journal of experimental botany, 2011,62(11):3837-3848.
doi: 10.1093/jxb/err077 pmid: 3134344
[41]   Ma Q H . Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. Journal of Experimental Botany, 2007,58(8):2011.
doi: 10.1093/jxb/erm064 pmid: 17452751
[42]   Prashant S, Sunita M S, Pramod S , et al. Down-regulation of Leucaena leucocephala cinnamoyl CoA reductase ( LlCCR ) gene induces significant changes in phenotype, soluble phenolic pools and lignin in transgenic tobacco. Plant Cell Reports, 2011,30(12):2215-2231.
doi: 10.1007/s00299-011-1127-6 pmid: 21847621
[43]   Zhang W, Wei R, Chen S , et al. Functional characterization of CCR in birch (Betula platyphylla × Betula pendula) through overexpression and suppression analysis. Physiologia Plantarum, 2014,154(2):283.
[1] JIA Xiao,QIU Jin,SHU Juan,LI Hua,XI Shu-bin,ZENG Yi-tao,ZENG Fan-yi. Serum Progesterone Level Detection for the Screening of Recipient Cattle for Cloned Embryo Transfer and Their Pregnancy Diagnosis[J]. China Biotechnology, 2020, 40(7): 1-8.
[2] YUAN Xiao-ying,WANG Ya-zhe,SHI Wei-hua,CHANG Yan,HAO Le,HE Ling-ling,SHI Hong-xia,HUANG Xiao-jun,LIU Yan-rong. Methodological Study on Flow Detection of PNH Clone and Its Clinical Screening Significance[J]. China Biotechnology, 2019, 39(9): 33-40.
[3] Bo-wen CHEN,Hai-long LIU,Yu-fei XIAO,Zi-hai QIN,Ye ZHANG,Xiao-ning ZHANG. Directional Regulation of Lignin Monomer Synthesis in Tobacco by Using COMT Gene and CCoAOMT Gene of Eucalyptus urophylla[J]. China Biotechnology, 2018, 38(3): 24-32.
[4] XIANG Li, WANG Shen, TIAN Hai-shan, ZHONG Mei-juan, ZHOU Ru-bin, CAO Ding-guo, LIANG Peng, ZHANG Guo-ping, HE Tao, PANG Shi-feng. Constructing Mouse pET3C-Myc Vector and Its Expression in Rosetta(DE3) and Its Purification[J]. China Biotechnology, 2017, 37(2): 20-25.
[5] WAN Yong-qing, YANG Yang, ZHANG Chun-lin, WAN Dong-li, YANG Ai-qin, YANG Qi, WANG Rui-gang, LI Guo-jing. Cloning and Expression Analysis of CiDHN1 Gene in Caragana intermedia[J]. China Biotechnology, 2016, 36(4): 88-96.
[6] FAN Fei-fei, LI Jie-qin, ZHAN Qiu-wen, WANG Li-hua, LIU Yan-long. Research Progress of Cinnamoyl-CoA Reductase (CCR) Gene in Plants[J]. China Biotechnology, 2015, 35(12): 96-102.
[7] JIN Xiao-xia, DONG Yan-long, QIN Zhi-wei, YU Li-jie, WU Shu-ju, SONG Jian. Cloning and Expression Characteristic of CSEBF1 Gene in Cucumber (Cucumis stavius L.)[J]. China Biotechnology, 2014, 34(3): 41-47.
[8] LONG Min, DONG Ke, WANG Xi, CHEN Xi, LIU Chong, LIU Li, ZHANG Hui-zhong. Developing an Anti-human AEG-1 Monoclonal Antibody Secreting Hybridoma and Its Variable Region Fragment Amplification[J]. China Biotechnology, 2014, 34(12): 10-15.
[9] LI Jian-bo, JIANG Ming-feng, WANG Yong. Tibetan Sheep Mammary Gland Lysozyme: Molecular Cloning, Prokaryotic Expression and Its Antibacterial Activity[J]. China Biotechnology, 2013, 33(8): 38-44.
[10] YANG Qi, YIN Jia-jia, WANG Yin, WANG Rui-gang, LI Guo-jing. Cloning and Expression Analysis of CkLEA1 Gene in Caragana korshinskii Kom[J]. China Biotechnology, 2013, 33(5): 93-99.
[11] LI Gao, YANG Qi, ZHANG Ye, WANG Rui-gang, LI Guo-jing. Cloning and Sequence Analysis of the CkC3H Gene from Caragana korshinskii Kom. and Preliminary Studies of Its Function[J]. China Biotechnology, 2013, 33(4): 61-67.
[12] ZHANG Qiao, YE Xian-long, REN Gui-ping, ZHANG Nan, LI Lu, LI De-shan. A New Method for the Purification of Restriction Enzyme Not[J]. China Biotechnology, 2011, 31(8): 102-109.
[13] YAO Jing, REN Jing, WU Zheng-jun, SUN Ke-jie, GUO Ben-heng. Cloning and Expression of the Key Enzyme Gene in Biosynthesis of Sialyl Lewis X[J]. China Biotechnology, 2011, 31(12): 51-56.
[14] YE Ruo-song, LI Peng, ZHANG Zhao-lin, WAN Cui-xiang, CUI Jia, WEI Hua. Cloning, Expression and Function Analysis of Serpin Gene in Bifidobacterium bifidum[J]. China Biotechnology, 2011, 31(02): 38-42.
[15] HUANG Jin-song, HUANG Jie-qin, TANG Qi-hui, CHEN Yu-bao. Expression and Application Research of the C-terminal Gene Fragment of P1 Protein of Mycoplasma pneumoniae in E.coli[J]. China Biotechnology, 2010, 30(11): 65-69.