Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (3): 37-45    DOI: 10.13523/j.cb.20190306
    
Co-expression of xylanase and mannanase in Pichia pastoris and the enzymatic analyses
Yin YAO,Qi MIN,Hai-rong XIONG,Li ZHANG()
College of Life Science,South-Central University for Nationalities,Wuhan 430074,China
Download: HTML   PDF(917KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Xylanase and mannanase are two important hemicellulases and feed enzyme preparations. Construction method of in vitro multimers in Pichia pastoris expression system has been used to construct recombinant plasmid pPICZαA/DSB-ManA which contained both DSB gene and ManA gene. Then, pPICZαA/DSB-ManA was transformed to host cells Pichia pastoris X33 by electroporation to obtain the co-expression recombinant strain X33/DSB-ManA. In shake-flask cultivation, xylanase activity and mannanase activity in the supernatant were 273.6 U/ml and 256.8 U/ml that reached 30.4% and 73.4% activity compared to X33/DSB and X33/ManA, respectively. Properties of the mixed enzyme suggested that the optimal reaction temperature for DSB and ManA is 75℃. Both xylanase and mannanase showed more than 60% activity across temperature ranges 45°C to 75°C. The optimal reaction pH value of DSB and ManA were 6.5 and 6.0, respectively. After incubation 1 hour under the pH3.0 and 40℃ treatment condition, mannanase activity of ManA displayed greater than 80% activity and xylanase activity of DSB revealed more than 50% activity. Meanwhile, DSB and ManA have shown good tolerance to a variety of metal ions and chemical reagents. Both enzyme activities could keep over 60% activity when the treatment concentration of different metal ions and chemical reagents was 1 millimole. Xylanase DSB and mannanase ManA have been co-expressed in Pichia pastoris successfully. The successful expression of the two enzymes of the recombinant strain could offer the theory basis for production and application of compound enzyme in the animal feed.



Key wordsXylanase      Mannanase      Pichia      pastoris      Co-expression      Enzymatic      characteristics     
Received: 06 September 2018      Published: 12 April 2019
ZTFLH:  Q789  
Corresponding Authors: Li ZHANG     E-mail: serena20112014@mail.scuec.edu.cn
Cite this article:

Yin YAO,Qi MIN,Hai-rong XIONG,Li ZHANG. Co-expression of xylanase and mannanase in Pichia pastoris and the enzymatic analyses. China Biotechnology, 2019, 39(3): 37-45.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190306     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I3/37

基因 引物 引物序列(5'→3') 酶切位点
DSB P1 CCGGAATTCTGCGCAACCCCCAACTCGGAG EcoR I
P2 ATAGCGGCCGCTTAGCCCACGTCAGCAACGG Not I
ManA P3 TATGGTACCTCTGGTGGACCAAACTTGTCTG Kpn
P4 CCGTCTAGAAGAGGTACCGATAGCGTTAGTTC Xba
Table 1 Sequence of PCR amplification primers
Fig.1 Schematic diagram of construction of pPICZαA/DSB-ManA
Fig.2 Electrophoresis analysis of co-expression recombinant plasmid pPICZαA/DSB-ManA (a) Electrophoresis of PCR analysis of DSB and ManA. M: DL5000 DNA marker; 1: ManA; 2: DSB (b) Restriction analysis of recombinant plasmid pPICZαA/DSB and pPICZαA/ManA. M: DL5000 DNA marker; 1: pPICZαA/ManA; 2: pPICZαA/DSB (c) Restriction analysis of pPICZαA/DSB-ManA. M: DL5000 DNA marker; 1: pPICZαA/DSB-ManA
Fig.3 Enzyme activities of X33/DSB and X33/ManA at 144h (a) Xylanase activity of different transmutants of X33/DSB (b) Mannanase activity of different transmutants of X33/ManA
Fig.4 The growth curve(a) and the xylanase activity and mannanase activity curves(b) of X33/DSB-ManA
Fig.5 SDS-PAGE analysis of X33/DSB-ManA fermentation supernatant M: Prestained protein ladder; 1: X33/DSB-ManA fermentation supernatant
Fig.6 Optimum tempature (a) and thermal stability (b) of xylanase (pH 6.5) and mannanase (pH 6.0) of X33/DSB-ManA
Fig.7 Optimum pH (75℃) (a) and pH stability (b) of xylanase and mannanase of X33/DSB-ManA
浓度(mmol/L)

金属离子
0 0.5 1
Cu2+ 100±1.95 97.22±4.67 83.71±2.81
Fe3+ 100±2.49 105.75±3.16 86.12±6.36
Mn2+ 100±7.52 65.03±1.21 69.79±1.27
Co2+ 100±4.52 104.93±5.30 87.15±3.82
Mg2+ 100±2.93 99.83±4.24 107.56±3.00
Li+ 100±2.85 103.43±3.62 101.33±6.26
Ni2+ 100±4.03 101.38±7.19 102.36±4.31
Ca2+ 100±5.58 121.27±2.82 131.57±4.88
Pb2+ 100±3.94 95.74±2.49 87.14±5.91
SDS 100±4.28 97.74±4.89 99.73±1.85
EDTA 100±2.33 85.06±4.31 90.56±6.99
巯基乙醇 100±2.58 93.29±7.01 87.40±5.55
Table 2 The effects of different chemical reagents and metal ions on the activity of mannanase
浓度(mmol/L)

金属离子
0 0.5 1
Cu2+ 100±0.26 91.55±0.38 73.18±0.37
Fe3+ 100±0.76 98.29±0.33 97.20±0.14
Mn2+ 100±0.77 64.09±0.54 67.89±0.77
Co2+ 100±0.68 117.13±0.49 96.80±0.74
Mg2+ 100±0.61 90.93±0.75 91.78±1.07
Li+ 100±0.81 97.80±0.54 96.99±0.33
Ni2+ 100±0.45 99.16±0.63 96.69±0.56
Ca2+ 100±0.50 92.79±0.71 96.04±0.35
Pb2+ 100±0.86 92.62±0.77 87.71±1.09
SDS 100±2.22 84.89±0.92 78.51±0.58
EDTA 100±0.50 89.82±1.05 84.04±1.21
巯基乙醇 100±0.61 99.47±2.29 100.49±1.67
Table 3 The effects of different chemical reagents and metal ions on the activity of xylanase
[1]   Collins T, Gerday C, Feller G . Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews, 2005,29(1):3-23.
doi: 10.1016/j.femsre.2004.06.005
[2]   Pollet A, Delcour J A, Courtin C M . Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families. Critical Reviews in Biotechnology, 2010,30(3):176-191.
doi: 10.1078/0065-1281-00679 pmid: 20225927
[3]   Le Nours J, Anderson L, Stoll D , et al. The structure and characterization of a modular endo-β-1, 4-mannanase from Cellulomonas fimi. Biochemistry, 2005,44(38):12700-12708.
doi: 10.1021/bi050779v
[4]   Couturier M, Roussel A, Rosengren A , et al. Structural and biochemical analyses of glycoside hydrolase families 5 and 26 beta-(1, 4)-mannanases from Podospora anserina reveal differences upon manno-oligosaccharides catalysis. Journal of Biological Chemistry, 2013,288(20):14624-14635.
doi: 10.1074/jbc.M113.459438
[5]   魏川子, 王兆斌, 李燕蒙 , 等. 半纤维素酶在畜禽饲料中的应用及研究进展. 畜牧与饲料科学, 2015,36(12):44-46.
[5]   Wei C Z, Wang Z B, Li Y M , et al. Application and research progress of hemicellulases in animal feed. Animal Husbandry and Feed Science, 2015,36(12):44-46.
[6]   黄生平, 汪昌丽, 张桂敏 , 等. 植酸酶和甘露聚糖酶双功能毕赤酵母工程菌的构建和产酶分析. 微生物学报, 2007,47(2):280-284.
doi: 10.3321/j.issn:0001-6209.2007.02.019
[6]   Huang S P, Wang C L, Zhang G M , et al. Construction of a double functional recombinant strainof Pichia pastoris co-expressing phytase and mannanase and the enzymatic analyses. Acta microbiologica Sinica, 2007,47(2):280-284.
doi: 10.3321/j.issn:0001-6209.2007.02.019
[7]   吴振芳, 唐自钟, 陈惠 , 等. 毕赤酵母中植酸酶和内切葡聚糖酶共表达菌株的构建及其高效表达. 生物工程学报, 2010,26(5):616-622.
[7]   Wu Z F, Tang Z Z, Chen H , et al. Construction of Pichia pastoris recombinant strain capable of over-expressing phytase and endoglucanase. Chinese Journal of Biotechnology, 2010,26(5):616-622.
[8]   Damasceno L M, Huang C J, Batt C A . Protein secretion in Pichia pastoris and advances in protein production. Applied Microbiology and Biotechnology, 2012,93(1):31-39.
doi: 10.1007/s00253-011-3654-z pmid: 22057543
[9]   Rabert C, Weinacker D, Pessoa A Jr , et al. Recombinants proteins for industrial uses: Utilization of Pichia pastoris expression system. Brazilian Journal of Microbiology, 2013,44(2):351-356.
doi: 10.1590/S1517-83822013005000041
[10]   Yu H Y, Sun Y M, Wang W , et al. Purification and properties of Bacillus subtilis SA-22 Endo-1,4-β-D-mannanase. Chinese Journal of Biotechnology, 2003,19(3):327-331.
[11]   张巍, 王亚伟, 陈丰 , 等. 一株全基因合成耐热甘露聚糖酶的表达及酶学性质分析. 中国生物工程杂志, 2014,34(8):41-46.
doi: 10.13523/j.cb.20140807
[11]   Zhang W, Wang Y W, Chen F , et al. Gene synthesis, expression and characterization of a thermostable endo-β-1,4-mannanase. China Biotechnology, 2014,34(8):41-46.
doi: 10.13523/j.cb.20140807
[12]   田军辉 . β-甘露聚糖酶对不同蛋白饲料的体外酶解效果及其在断奶仔猪低能量日粮中的应用研究. 河南:河南农业大学, 2014.
[12]   Tian J H . The effects of β-Mannanase on protein feed stuffs in vitro and study on weaned piglets in low energy diets. Henan: Henan Agricultural University, 2014.
[13]   郭玉光, 杜红方, 王敏 , 等. 饲粮中添加复合酶对仔猪生长性能, 血液生化指标和养分消化率的影响. 中国畜牧杂志, 2018,54(2):65-68.
doi: 10.19556/j.0258-7033.2018-02-065
[13]   Guo Y G, Du H F, Wang M , et al. Effects of compound enzymes added to diet on growth performance, blood biochemical indexes and nutrient digestibility of piglets. Chinese Journal of Animal Science, 2018,54(2):65-68.
doi: 10.19556/j.0258-7033.2018-02-065
[14]   周雪梅, 杨在宾, 姜淑贞 , 等. 复合酶制剂对蛋鸡生产性能, 蛋品质, 肠道健康微生物及养分利用率的影响. 家禽科学, 2017 ( 11):7-12.
doi: 10.3969/j.issn.1673-1085.2017.11.002
[14]   Zhou X M, Yang Z B, Jiang S Z , et al. Effects of compound enzyme preparation on production performance, egg quality, intestinal health microorganism and nutrient utilization rate of laying hens. Journal of Poultry Science, 2017 ( 11):7-12.
doi: 10.3969/j.issn.1673-1085.2017.11.002
[15]   谭子超, 刘浩民, 薛梅 , 等. 小麦-豆粕型饲粮添加复合酶制剂对肉鸡肠道微生物菌群和影响. 中国饲料, 2018 ( 9):19-24.
doi: 10.15906/j.cnki.cn11-2975/s.20180904
[15]   Tan Z C, Liu H M, Xue M , et al. Effects of different levels of compound enzyme preparation added in wheat-soybean meal diet on broiler’s gastrointestinal microbial flora and chyme acidity. China Feed, 2018 ( 9):19-24.
doi: 10.15906/j.cnki.cn11-2975/s.20180904
[16]   Cozannet P, Meur M, Batut H , et al. Enzyme complex improves performance of broilers fed wheat-and soybean-based diets with graded density//Optimum definition,Australian Poultry Science Symposium. Sydney: Poultry Research Foundation, 2013: 68-71.
[17]   Beauchemin K A, Colombatto D, Morgavi D P . A rationale for the development of feed enzyme products for ruminants. Canadian Journal of Animal Science, 2004,84(1):23-36.
doi: 10.1354/vp.39-5-565
[18]   刘高磊, 胡蝶, 邬敏辰 , 等. 内切葡聚糖酶与木聚糖酶在毕赤酵母中的共分泌表达. 食品与生物技术学报, 2015,34(3):253-259.
[18]   Liu G L, Hu D, Wu M C , et al. Co-expression of endoglucanase and xylanase in Pichia pastoris. Journal of Food Science and Biotechnology, 2015,34(3):253-259.
[19]   马蓉, 徐昊, 丁锐 , 等. 大肠杆菌多基因共表达策略. 中国生物工程杂志, 2012,32(04):117-122.
[19]   Ma R, Xu H, Ding R , et al. The strategy of gene coexpression in Escherichia Coli. China Biotechnology, 2012,32(4):117-122.
[1] WANG Yi-han,LI Hai-yan,XUE Yong-chang. The Structural Characteristics and Engineering Reconstruction of Flavin-dependent Halogenase[J]. China Biotechnology, 2021, 41(4): 74-80.
[2] ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis[J]. China Biotechnology, 2021, 41(2/3): 53-62.
[3] LIANG Ai-ling,LIU Wen-ting,WU Pan,LI Qian,GAO Jian,ZHANG Jie,LIU Wei-dong,JIA Shi-ru,ZHENG Ying-ying. Characterization and Function of Key Amino Acids in Substrate Bingding Center of a Novel Zearalenone Hydrolase from Exophiala aquamarina[J]. China Biotechnology, 2021, 41(10): 19-27.
[4] GUO Guang-chao,ZHOU Yu-yong,CAO San-jie,WU Yao-min,WU Rui,ZHAO Qin,WEN Xin-tian,HUANG Xiao-bo,WEN Yi-ping. The Study on the Effect of NS2A-C60A Site Mutation of Japanese Encephalitis Virus on Its Biological Characteristics[J]. China Biotechnology, 2020, 40(9): 1-10.
[5] WEI Wei,CHANG Bao-gen,WANG Ying,LU Fu-ping,LIU Fu-feng. Heterologous Expression, Purification and Aggregation Characterization of Tau Core Fragment 306-378[J]. China Biotechnology, 2020, 40(5): 22-29.
[6] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[7] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[8] ZHU Xiao-li,HUANG Cui,MA Li-li,ZHANG Chao,GONG Yue,ZHAO Wan-yu,ZHAO Xiu-fang,GUO Wen-jiao,PENG Hao,ZHANG Ji,LIANG Hui-gang. Research Advances of Novel Coronavirus Disease (COVID-19)[J]. China Biotechnology, 2020, 40(1-2): 38-50.
[9] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[10] CHENG Zi-zhao,CHEN Chu-chu,YING Lei,LI Xiao-kun,HUANG Zhi-feng. Comparison of Genomic and Infection Characteristics of Coronavirus[J]. China Biotechnology, 2020, 40(11): 56-66.
[11] HU Fu,LI Qian,ZHU Ben-Wei,NING Li-Min,YAO Zhong,SUN Yun,DU Yu-guang. Research Progress in Ulvan Lyase[J]. China Biotechnology, 2019, 39(8): 104-113.
[12] Meng-ying OU,Xiao-zheng WANG,Shuang-jun LIN,Tong-wei GUAN,Yi-jin LIN. A Review of Studies on Streptonigrin[J]. China Biotechnology, 2019, 39(7): 100-107.
[13] Yuan TIAN,Yan-ling LI. Biosynthesis of Fusaruside Based on Recombinant Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 8-14.
[14] Fei WANG,Chun-hui HU,hao YU. Catalytic Mechanism of 6-Hydroxynicotinic Acid 3-Monooxygenase (NicC)[J]. China Biotechnology, 2019, 39(7): 15-23.
[15] Ji-ping LI,Chang-jie BAO,Guang CHEN,Si-tong ZHANG. Research Advances in Heterologous Expression of Xylanase[J]. China Biotechnology, 2019, 39(7): 91-99.