Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (06): 90-97    DOI: 10.13523/j.cb.20140613
    
Current Status and Prospects of the Expression of Butanol Pathway in Escherichia coli
WANG Qing-long1,2, LIU li2, SHI Ji-ping2, XUE Yong-chang1, SUN Jun-song2
1. School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
2. Biorefinery Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
Download: HTML   PDF(574KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Biobutanol is regarded as a promising biofuel amid the energy crisis and global problems brought by excess use of fossil energy. In recent years, microorganisms including Escherichia coli are of interests in bioengineering studies for bioproduction of butanol, mostly done by heterologous expression of clostridia derived synthetic butanol pathway. Currently, the maximal yield of butanol production reported in Escherichia coli has been close to that in natural strains; however, there still existed many problems daunting the attempts to further improve the biobutanol level by using this microorganism. The engineered metabolic pathways for formation of n-butanol in E. coli were briefly summarized, the limiting factors existed in bioengineering studies were analyzed, and the possible solutions that might help in further improvement of biobutanol productivity using E. coli as host strain were shared.



Key wordsButanol metabolism      Escherichia coli      Biobutanol     
Received: 12 March 2014      Published: 25 June 2014
ZTFLH:  Q786  
Cite this article:

WANG Qing-long, LIU li, SHI Ji-ping, XUE Yong-chang, SUN Jun-song. Current Status and Prospects of the Expression of Butanol Pathway in Escherichia coli. China Biotechnology, 2014, 34(06): 90-97.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140613     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I06/90


[1] 刘娅,刘宏娟,张建安,等. 新型生物燃料—丁醇的研究进展. 现代化工,2008, 28(6): 28-33. Liu Y, Liu H J, Zhang J A, et al. Research progress in new biofuel butanol. Modern Chemical Industry, 2008, 28(6): 28-33.

[2] Ni Y, Sun Z H. Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Applied Microbiology and Biotechnology, 2009, 83(3): 415-423.

[3] Lee S Y, Park J H, Jang S H, et al. Fermentative butanol production by Clostridia. Biotechnology and Bioengineering, 2008, 101(2): 209-228.

[4] Mermelstein L D, Papoutsakis E T, Bennett G N. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme-activities using a synthetic acetone operon. Biotechnology and Bioengineering, 1993, 42(9): 1053-1060.

[5] 杨明,刘力强,牛昆,等. 丙酮丁醇发酵菌的分子遗传改造. 中国生物工程杂志,2009, 29(10): 109-114. Yang M, Liu L Q, Niu K, et al. Genetic features and modification of Clostridium acetobutylicum and Clostridium beijerinckii for acetone butanol and ethanol fermentation. China Biotechnology, 2009, 29(10): 109-114.

[6] Branduardi P, Longo V, Berterame N M, et al. A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2013, 6: 68.

[7] Nielsen D R, Leonard E, Yoon S H, et al. Engineering alternative butanol production platforms in heterologous bacteria. Metabolic Engineering, 2009, 11(4/5): 262-273.

[8] Berezina O V, Zakharova N V, Brandt A, et al. Reconstructing the clostridial n-butanol metabolic patheway in Lactobacillus brevis. Applied Microbiology and Biotechnology, 2010, 87(2): 635-646.

[9] Truffaut N, Hubert J, Reysset G. Construction of shuttle vectors useful for transforming Clostridium acetobutylicum. FEMS Microbiology Letters, 1989, 58(1): 15-19.

[10] Mermelstein L D, Papoutsakis E T. In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids form restriction upon transformation of Clostridium acetobutylicum ATCC 824. Applied and Environmental Microbiology, 1993, 59(4): 1077-1081.

[11] Tyurin M, Padda R, Huang K, et al. Electrotransformation of Clostridium acetobutylicum ATCC 824 using high-voltage radio frequency modulated square pulses. Applied Microbiology, 2000, 88(2): 220-227.

[12] Dong H, Zhang Y, Dai Z, et al. Engineering Clostridium strain to accept unmethylated DNA. PLoS ONE, 2010, 5(2): e9038.

[13] Green E M, Bennett G N. Genetic manipulation of acid and solvent formation in Clostridium acetobutylicum ATCC 824. Biotechnology and Bioengineering, 1988, 58(2/3): 215-221.

[14] Desai R P, Papoutsakis E T. Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Applied and Environmental Microbiology, 1999, 65(3): 936-945.

[15] Tummala S B, Junne S G, Papoutsakis E T. Antisense RNA downregulation of coenzyme A transferase combined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations. Bacteriology, 2003, 185(12): 3644-3653.

[16] Soucaille P, Figge R, Croux C. Process for chromosomal integration and DNA sequence replacement in clostridia. PCT/EP06/66997, 2006.

[17] Heap J T, Pennington O J, Cartman S T, et al. The ClosTron: a universal gene knock-out system for the genus Clostridium. Microbiological Methods, 2007, 70(3): 452-464.

[18] Shao L, Hu S, Yang Y, et al. Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Research, 2007, 17(11): 963-965.

[19] 闫永亮,刘宏娟,张建安. 代谢工程在生物丁醇生产中的应用及研究进展. 现代化工,2012, 32(4): 25-31. Yan Y L, Liu H J, Zhang J A. Application and research progress of metabolic engineering in butanol production. Modern Chemical Industry, 2012, 32(4): 25-31.

[20] 戴宗杰,董红军,朱岩,等. 生物丁醇代谢工程的研究进展. 生物加工过程,2013, 11(2): 58-64. Dai Z J, Dong H J, Zhu Y, et al. Metabolic engineering for biobutanol production: a review. Chinese Journal of Bioprocess Engineering, 2013, 11(2): 58-64.

[21] 张艳,周鹏鹏,王丕祥,等. 丁醇合成途径关键酶基因在大肠杆菌中的克隆和表达. 微生物学报,2012, 52(5): 588-593. Zhang Y, Zhou P P, Wang P X, et al. Cloning and expression of key genes of butanol synthetic pathway in Escherichia coli. Acta Microbiologica Sinica, 2012, 52(5): 588-593.

[22] 张秋妍,郭亭,杜腾飞,等. 产丁醇重组大肠杆菌的构建及初步发酵. 南京工业大学学报(自然科学版),2012, 34(4): 118-122. Zhang Q Y, Guo T, Du T F, et al. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli for butanol production. Journal of Nanjing University of Technology (Natural Science Edition), 2012, 34(4): 118-112.

[23] Dellomonaco C, Clomburg J M, Miller E N, et al. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature, 2011, 476: 355-359.

[24] Atsumi S, Hanai T, Liao J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 2008, 451: 86-89.

[25] Shen C R, Liao J C. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metabolic Engineering, 2008, 10(6): 312-320.

[26] Atsumi S, Liao J C. Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Applied and Environmental Microbiology, 2008, 74(24): 7802-7808.

[27] Trinh C T. Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production. Applied and Environmental Microbiology, 2012, 95(4): 1083-1094.

[28] Becker D F, Fuchs J A, Banfield D K, et al. Characterization of wild-type and an active site mutant in E. coli of short-chain acyl-CoA dehydrogenase from Megasphaera elsdenii. Biochemistry, 1993, 32(40): 10736-10742.

[29] Bond-Watts B B, Bellerose R J, Chang M C. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nature Chemical Biology, 2011, 7(4): 222-227.

[30] Inui M, Suda M, Kimura S, et al. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Applied Microbiology and Biotechnology, 2008, 77(6): 1305-1316.

[31] 唐玮,李键,陈军,等. 大肠杆菌异源生产丁醇途径组装及启动子优化. 生物工程学报,2012, 28(11): 1328-1336. Tang W, Li J, Chen J, et al. Butanol pathway construction and promoter optimization in Escherichia coli. Chinese Journal of Biotechnology, 2012, 28(11): 1328-1336.

[32] 郑丽娟,陈少云,徐刚,等. 利用双启动子载体构建产异丁醇大肠杆菌. 中国生物工程杂志,2013, 33(8): 66-72. Zheng L J, Chen S Y, Xu G, et al. Engineering E. coli for isobutanol production by two-promoter vectors. China Biotechnology, 2013, 33(8): 66-72.

[33] Sun J, Hopkins R C, Jenney F E, et al. Heterologous expression and maturation of an NADP-dependent -hydrogenase: a key enzyme in biofuel production. PLoS ONE, 2010, 5(5): e10526.

[34] Atsumi S, Cann A F, Connor M R, et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Engineering, 2008, 10: 305-311.

[35] Kim Y, Ingram L O, Shanmugam K T. Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. Journal of Bacteriology, 2008, 190(11): 3851-3858.

[36] Lim J H, Seo S W, Kim S Y, et al. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metabolic Engineering, 2013, 20(1): 56-62.

[37] Shen C R, Lan E I, Dekishima Y, et al. Driving force enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Applied and Environmental Microbiology, 2011, 77(9): 2905-2915.

[38] Chen S K, Chin W C, Tsuge K, et al. Fermentation approach for enhancing 1-butanol production using engineered butanologenic Escherichia coli. Bioresource Technology, 2013, 145: 204-209.

[39] Jones D T, Woods D R. Acetone-butanol fermentation revisited. Microbiological Reviews, 1986, 50(4): 484-524.

[40] Lütgens M, Gottschalk G. Why a co-substrate is required for anaerobic growth of Escherichia coli on citrate. General Microbiology, 1980, 119(1): 63-70.

[41] 庞浩,裴建新,左文朴,等. 拜氏梭菌13-2发酵甘蔗渣水解液生产丁醇的研究. 生物技术,2011, 21(5): 79-82. Pang H, Pei J X, Zuo W P, et al. Fermentation hydrolyzate of sugarcane bagasse to butanol by Clostridium beijerinckii13-2. Biotechnology, 2011, 21(5): 79-82.

[42] Bowles L K, Ellefson W L. Effects of butanol on Clostridium acetobutylicum. Applied and Environmental Microbiology, 1985, 50(5): 1165-1170.

[43] Liu S Q, Qureshi N. How microbes tolerate ethanol and butanol. New Biotechnology, 2009, 26(3-4): 117-121.

[44] 毛邵明,章怀云. 丙酮丁醇梭菌丁醇耐受性. 生物工程杂志,2012, 32(9): 118-124. Mao S M, Zhang H Y. The advance of research on the butanol tolerance of Clostridium acetobutylicum. China Biotechnology, 2012, 32(9): 118-124.

[45] 张丽丽,沈兆冰,史吉平,等. 紫外诱变和丁醇驯化复合选育高产丁醇菌株. 中国酿造,2013, 32(5): 129-133. Zhang L L, Shen Z B, Shi J P, et al. Screening a butanol-high production strain by UV mutation and butane domestication. China Brewing, 2013, 32(5): 129-133.

[46] Zhao J, Yang S, Jiang W, et al. High titer butanol production using a mutant Clostridium beijerinckii achieved by adaptation in fibrous bed bioreactor. American Institute of Chemical Engineering, National Meeting, 2009.

[47] Lu C, Zhao J, Yang S T, et al. Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresource Technology, 2012, 104: 380-387.

[48] Atsumi S, Wu T Y, Machado I M, et al. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Molecular Systems Biology, 2010, 6: 449.

[49] Knoshaug E P, Zhang M. Butanol tolerance in a selection of microorganisms. Applied Biochemistry and Biotechnology, 2009, 153(1-3): 13-20.

[50] Jeong H, Han J. Enhancing the 1-butanol tolerance in Escherichia coli through repetitive proton beam irradiation. Journal of the Korean Physical Society, 2010, 56(6): 2014-2045.

[51] Borden J R, Papoutsakis E T. Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Applied and Environmental Microbiology, 2007, 73(9): 3061-3068.

[52] Reyes L H, Almario M P, Kao K C. Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PLoS One, 2011, 6(3): e17678.

[53] Reyes L H, Almario M P, Winkler J, et al. Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli. Metabolic Engineering, 2012, 14(5): 579-590.

[54] Reyes L H, Abdelaal A S, Kao K C. Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors. Applied and Environmental Microbiology, 2013, 79(17): 5313-5320.

[55] Rutherford B J, Dahl R H, Price R E, et al. Functional genomic study of exogenous n-butanol stress in Escherichia coli. Applied and Environmental Microbiology, 2010, 76(6): 1935-1945.

[56] Lin K H, Chin W C, Lee A H, et al. Genetic improvement of butanol tolerance in Escherichia coli by cell surface expression of fish metallothionein. Bioengineered Bugs, 2011, 2(1): 55-57.

[57] Scudiero R, Temussi P A, Parisi E. Fish and mammalian metallothioneins: a comparative study. Gene, 2005, 345(1): 21-26.

[1] HU Li-qiang, ZHENG Wen, ZHONG Yi, DU Dan, YANG Hao, GONG Meng. Comparison of Expression and Activity of Antiviral Protein RC28 in Escherichia coli and Pichia pastoris[J]. China Biotechnology, 2017, 37(1): 14-20.
[2] WU Xue-long, YANG Xiao-hui, WANG Jun-qing, WANG Rui-ming. Expression and Characteristics of Apis mellifera NADPH-cytochrome P450 Reductase Gene in Escherichia coli[J]. China Biotechnology, 2016, 36(12): 28-35.
[3] FANG Li xia, CAO Ying xiu, SONG Hao. Engineering Escherichia coli to Synthesize Free Fatty Acids: A Recent Progress[J]. China Biotechnology, 2016, 36(11): 90-97.
[4] ZHANG Qiang, LI Da shuai, LU Wen yu. Progress and Prospect of Heterologous Biosynthesis of Ttriterpenoids in Engineered Escherichia coli[J]. China Biotechnology, 2016, 36(11): 83-89.
[5] XIONG Yuan-yuan, LU Chuan-dong, TAO Ye, ZHAO Jin-fang. Fermentative Production of L-lactic Acid from Wastepaper by Recombinant Escherichia coli WL204[J]. China Biotechnology, 2015, 35(5): 49-54.
[6] GUO Zhao-lai, BAI Xue-gui, YAN Jin-ping, CHEN Xuan-qin, LI Kun-zhi, XU Hui-ni. Prokaryotic Expression and Function Analysis of SoHb from Spinach[J]. China Biotechnology, 2015, 35(4): 54-59.
[7] QIAN Xin, GUO Hong-yan, ZHOU Qing-feng. Construction of 4-Hydroxyphenylacetate-3-hydroxylase A Expression Strain and Its Biotransformation Effect on Hydroxytyrosol[J]. China Biotechnology, 2015, 35(3): 56-60.
[8] FENG Qi, WANG Ying. Optimization and Application of SLiCE in vitro Assembly Method[J]. China Biotechnology, 2015, 35(10): 59-65.
[9] WANG Jian-feng, ZHANG Si-liang, WANG Yong. Pathway Assembly and Optimization in E. coli for de Novo Biosynthesis of Resveratrol[J]. China Biotechnology, 2014, 34(2): 71-77.
[10] LU Hong-ying, HE Hu, LIU Zao, WANG Yong-ze, WANG Jin-hua. Engineering of an Escherichia coli Strain LHY02 for Production of Optically Pure D-lactic Acid from Xylose[J]. China Biotechnology, 2014, 34(12): 91-96.
[11] MAO Hong-yan, MA Zheng-hai. Expression, Purification of Recombinant Herpes Simplex Virus 1 Glycoprotein D in E.coli and Identification of Its Immune Activity[J]. China Biotechnology, 2014, 34(11): 54-59.
[12] MA Huai-yuan, HUANG Fei, BAI Lin-han. Accumulation of Aspartic Acid in Escherichia coli W3110 is Improved by Homologous Recombination[J]. China Biotechnology, 2014, 34(06): 61-67.
[13] GE Gao-shun, ZHANG Li-chao, ZHAO Xin, HU Xue-jun, LI Ya-jie. Optimization of the Method for Scarless Gene Knockout in Escherichia coli Genome[J]. China Biotechnology, 2014, 34(06): 68-74.
[14] WANG Jing-yao, WANG Tian-nv, LU Lei, ZHANG Shuai, ZHAO Min. Research Advances in Secretary Production of Recombinant Protein Using Escherichia coli Type I Secretion System and Strategies for Enhancement of Secretion of Type I Pathway[J]. China Biotechnology, 2014, 34(06): 98-104.
[15] GUO Le, LIU Kun-mei, LI Min, ZHAO Hui, XU Guang-xian, DUAN Xiang-guo, HAN Xue-bo, YANG Hua, WANG Yu-jiong. Purification and Immunologic Study of Subunit Vaccines 3STaM(G)-K99 and 3STaM(S)-K99 with Tandem Copies of Mutant Heat-stable Enterotoxin STa and Colonization Factor K99 from Enterotoxigenic Escherichia coli[J]. China Biotechnology, 2013, 33(7): 18-24.