Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (2): 71-77    DOI: 10.13523/j.cb.20140212
    
Pathway Assembly and Optimization in E. coli for de Novo Biosynthesis of Resveratrol
WANG Jian-feng1,2, ZHANG Si-liang1, WANG Yong2
1. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China;
2. Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
Download: HTML   PDF(845KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Resveratrol is an important plant stilbene with considerable pharmaceutical values. To achieve the de novo biosynthesis of resveratrol in E. coli, a heterologous resveratrol biosynthetic pathway consisting of tyrosine ammonia lyase (TAL), coumaroyl-CoA synthase (4CL) and stilbene synthase (STS) was constructed. The engineered strain only produced 2.67 mg/L resveratrol after 3 days cultivation. To improve the efficiency of heterologous pathway, the 4CL and STS modules were further engineered using strategies of fusion expression, high-copy expression and promoter engineering. Eventually, the yield of resveratrol reached 25.76 mg/L with a 9.6-fold improvement compared with the initial strain. The useful information for the construction of more efficient recombinant resveratrol producer was provided, and it laid a foundation for the large-scale production of resveratrol through microbial fermentation.



Key wordsEscherichia coli      Resveratrol      Fusion expression      High-copy expression      Promoter engineering     
Received: 15 October 2013      Published: 25 February 2014
ZTFLH:  Q819  
Cite this article:

WANG Jian-feng, ZHANG Si-liang, WANG Yong. Pathway Assembly and Optimization in E. coli for de Novo Biosynthesis of Resveratrol. China Biotechnology, 2014, 34(2): 71-77.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140212     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I2/71

[1] King R E, Bomser J A, Min D B. Bioactivity of resveratrol. Comprehensive Reviews in Food Science and Food Safety, 2006, 5(3):65-70.
[2] Donnez D, Jeandet P, Clément C, et al. Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends in Biotechnology, 2009, 27(12):706-713.
[3] Xu P, Bhan N, Koffas M A. Engineering plant metabolism into microbes: from systems biology to synthetic biology. Current Opinion in Biotechnology, 2013, 24(2):291-299.
[4] Kirby J, Keasling J D. Metabolic engineering of microorganisms for isoprenoid production. Natural Product Reports, 2008, 25(4):656-661.
[5] Wang Y, Chen S, Yu O. Metabolic engineering of flavonoids in plants and microorganisms. Applied Microbiology and Biotechnology, 2011, 91(4):949-956.
[6] Lim C G, Fowler Z L, Hueller T, et al. High-yield resveratrol oroduction in engineered Escherichia coli. Applied and Environmental Microbiology, 2011, 77(10):3451-3460.
[7] Sydor T, Schaffer S, Boles E. Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Applied and Environmental Microbiology, 2010, 76(10):3361-3363.
[8] Shin S Y, Han N S, Park Y C, et al. Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate:coenzyme A ligase and stilbene synthase genes. Enzyme and Microbial Technology, 2011, 48(1):48-53.
[9] Watts K T, Lee PC, Schmidt-Dannert C. Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnology, 2006, 6:22.
[10] Beekwilder J, Wolswinkel R, Jonker H, et al. Production of resveratrol in recombinant microorganisms. Applied and Environmental Microbiology, 2006, 72(8):5670-5672.
[11] Leonard E, Lim K H, Saw PN, et al. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Applied and Environmental Microbiology, 2007, 73(12):3877-3886.
[12] Nijkam PK, Westerhof R G, Ballerstedt H, et al. Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose. Applied Microbiology and Biotechnology, 2007, 74(3):617-624.
[13] Watts K T, Lee P C, Schmidt-Dannert C. Exploring recombinant flavonoid biosynthesis in metabolically engineered Escherichia coli. ChemBioChem, 2004, 5(4):500-507.
[14] Santos C N, Koffas M A, Stephanopoulos G. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metabolic Engineering, 2011, 13(4):392-400.
[15] Wu J, Du G, Zhou J, et al. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metabolic Engineering, 2013 16:48-55.
[16] Wu J, Liu P, Fan Y, et al. Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from l-tyrosine. Journal of Biotechnology, 2013, 167(4):404-411.
[17] Puigbò P, Guzmán E, Romeu A, et al. OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Research, 2007, 35(suppl 2):W126-W131.
[18] Meng H, Wang J, Xiong Z, et al. Quantitative design of regulatory elements based on high-precision strength prediction using artificial neural network. PLoS ONE, 2013,8(4):e60288.
[19] Xue Z, McCluskey M, Cantera K, et al. Identification, characterization and functional expression of a tyrosine ammonia-lyase and its mutants from the photosynthetic bacterium Rhodobacter sphaeroides. Journal of Industrial Microbiology & Biotechnology, 2007, 34(9):599-604.
[20] Kyndt J A, Meyer T E, Cusanovich M A, et al. Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Letters, 2002, 512(1-3):240-244.
[21] Vannelli T, Wei Qi W, Sweigard J, et al. Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metabolic Engineering, 2007, 9(2):142-151.
[22] Louie G V, Bowman M E, Moffitt M, et al. Structural determinants and modulation of substrate specificity in phenylalanine-tyrosine ammonia-lyases. Chemistry & Biology, 2006, 13(12):1327-1338.
[23] Zhang Y, Li S Z, Li J, et al. Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells. Journal of the American Chemical Society, 2006, 128(40):13030-13031.
[24] Alper H, Fischer C, Nevoigt E, et al. Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences, 2005, 102(36):12678-12683.
[25] Wang Y, Yu O. Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells. Journal of Biotechnology, 2012, 157(1):258-260.
[26] Juminaga D, Baidoo E E, Redding-Johanson A M, et al. Modular engineering of L-tyrosine production in Escherichia coli. Applied and Environmental Microbiology, 2012, 78(1):89-98.
[27] Lutke-Eversloh T, Stephanopoulos G. Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: identification of enzymatic bottlenecks by systematic gene overexpression. Metabolic Engineering, 2008, 10(2):69-77.
[28] Leonard E, Lim K H, Saw P N, et al. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Applied and Environmental Microbiology, 2007, 73(12):3877-3886.

[1] YANG Fei-yun,YANG Tian-rui,LIU Kun,CUI Shuang,WANG Rui-gang,LI Guo-jing. Flavonoids Metabolism and Antimicrobial Activity of Arabidopsis Heterologous Expressing CiRS Gene[J]. China Biotechnology, 2019, 39(11): 22-30.
[2] Fei-yun YANG,Yan-yan WU,Shuang CUI,Xiu-juan ZHANG,Rui-gang WANG,Guo-jing LI. Heterologous Expression of CiRS Gene Eenhances the Antioxidant Capacity of Arabidopsis by Increasing the Content of Resveratrol[J]. China Biotechnology, 2017, 37(12): 27-33.
[3] HU Li-qiang, ZHENG Wen, ZHONG Yi, DU Dan, YANG Hao, GONG Meng. Comparison of Expression and Activity of Antiviral Protein RC28 in Escherichia coli and Pichia pastoris[J]. China Biotechnology, 2017, 37(1): 14-20.
[4] LIU Jing-ying, LIU Cheng-lang, ZHANG Yun-lei, WANG Shi-qi, XIA Li-qiu, ZHANG You-ming. The Fusion Expression of Bovine Lactoferricin (LfcinB) in Bacillus thuringiensis[J]. China Biotechnology, 2016, 36(8): 23-30.
[5] ZHU Xiao-peng, ZHANG Ya-ning, YU Jin-peng, LI Xiao-dan, LUO Su-lan, ZHANGSUN Dong-ting. Tandem Expression, Purification and Bioactivity Characterization of Conotoxin MrIA[J]. China Biotechnology, 2016, 36(5): 81-88.
[6] WU Xue-long, YANG Xiao-hui, WANG Jun-qing, WANG Rui-ming. Expression and Characteristics of Apis mellifera NADPH-cytochrome P450 Reductase Gene in Escherichia coli[J]. China Biotechnology, 2016, 36(12): 28-35.
[7] FANG Li xia, CAO Ying xiu, SONG Hao. Engineering Escherichia coli to Synthesize Free Fatty Acids: A Recent Progress[J]. China Biotechnology, 2016, 36(11): 90-97.
[8] ZHANG Qiang, LI Da shuai, LU Wen yu. Progress and Prospect of Heterologous Biosynthesis of Ttriterpenoids in Engineered Escherichia coli[J]. China Biotechnology, 2016, 36(11): 83-89.
[9] XIONG Yuan-yuan, LU Chuan-dong, TAO Ye, ZHAO Jin-fang. Fermentative Production of L-lactic Acid from Wastepaper by Recombinant Escherichia coli WL204[J]. China Biotechnology, 2015, 35(5): 49-54.
[10] GUO Zhao-lai, BAI Xue-gui, YAN Jin-ping, CHEN Xuan-qin, LI Kun-zhi, XU Hui-ni. Prokaryotic Expression and Function Analysis of SoHb from Spinach[J]. China Biotechnology, 2015, 35(4): 54-59.
[11] QIAN Xin, GUO Hong-yan, ZHOU Qing-feng. Construction of 4-Hydroxyphenylacetate-3-hydroxylase A Expression Strain and Its Biotransformation Effect on Hydroxytyrosol[J]. China Biotechnology, 2015, 35(3): 56-60.
[12] FENG Qi, WANG Ying. Optimization and Application of SLiCE in vitro Assembly Method[J]. China Biotechnology, 2015, 35(10): 59-65.
[13] SHI Xian-wei, ZHANG Wei-tao, ZHANG Xiao-fei, YANG Guang-yu, FENG Yan. The Heterologous Expression and Characterization of Lytic Polysaccharide Monooxygenase from Actinosynnema mirum DSM 43827[J]. China Biotechnology, 2014, 34(7): 17-23.
[14] LU Hong-ying, HE Hu, LIU Zao, WANG Yong-ze, WANG Jin-hua. Engineering of an Escherichia coli Strain LHY02 for Production of Optically Pure D-lactic Acid from Xylose[J]. China Biotechnology, 2014, 34(12): 91-96.
[15] MAO Hong-yan, MA Zheng-hai. Expression, Purification of Recombinant Herpes Simplex Virus 1 Glycoprotein D in E.coli and Identification of Its Immune Activity[J]. China Biotechnology, 2014, 34(11): 54-59.