Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (06): 98-104    DOI: 10.13523/j.cb.20140614
    
Research Advances in Secretary Production of Recombinant Protein Using Escherichia coli Type I Secretion System and Strategies for Enhancement of Secretion of Type I Pathway
WANG Jing-yao, WANG Tian-nv, LU Lei, ZHANG Shuai, ZHAO Min
College of Life Sciences, Northeast Forestry University, Harbin 150040, China
Download: HTML   PDF(861KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Escherichia coli is one of the most commonly used hosts for recombinant protein production. Extracellular protein expression in E. coli, which is favored by its improved correct folding of target protein, reduced formation of inclusion bodies and simplified purification process, is attracting increasing attention. Among all the secretion systems of E. coli, the type I secretion system has become one of the most popular secretion pathways due to its fast secretion speed, high expression ability and harmlessness to cell physiology. The components and mechanism of type I pathway of E. coli and efficient strategies for enhancing secretion efficiency of recombinant protein are summarized, which provides the theoretical basis for production of recombinant protein.



Key wordsEscherichia coli      Extracellular expression      Recombinant protein      Type I secretion pathway      Efficient secretory strategy     
Received: 31 March 2014      Published: 25 June 2014
ZTFLH:  Q786  
Cite this article:

WANG Jing-yao, WANG Tian-nv, LU Lei, ZHANG Shuai, ZHAO Min. Research Advances in Secretary Production of Recombinant Protein Using Escherichia coli Type I Secretion System and Strategies for Enhancement of Secretion of Type I Pathway. China Biotechnology, 2014, 34(06): 98-104.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140614     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I06/98


[1] 何冰芳, 米兰, 陈文华. 大肠杆菌蛋白质分泌机理及其重组蛋白分泌表达新进展. 食品与生物技术学报, 2012, 31(6): 561-569. He B F, Mi L, Chen W H. The secretion mechanism of protein from E. coli and recent advancements of recombinant protein expression. J Food SCI Biotechnol, 2012, 31(6): 561-569.

[2] Ni Y, Chen R. Extracellular recombinant protein production from Escherichia coli. Biotechnol Lett, 2009, 31: 1661-1670.

[3] Yoon S H, Kim S K, Kim J F. Secretory production of recombinant proteins in Escherichia coli. Recent Pat Biotechnol, 2010, 4: 23-29.

[4] 訾祯祯, 杨志伟. 细菌蛋白分泌途径的研究进展. 生物技术通报, 2011, 8: 44-54. Zi Z Z, Yang Z W. Protein secretion pathways in bacterial cells. Biol Bull, 2011, 8: 44-54.

[5] Mergulho F J, Summers D K, Monteiro G A. Recombinant protein secretion in Escherichia coli. Biotechnol Adv, 2005, 23(3): 177-202.

[6] Badyakina A O, Nesmeyanova M A. Biogenesis and secretion of overproduced protein in recombinant strains of Escherichia coli. Process Biochem, 2005, 40: 509-518.

[7] Chen S, Liu Z, Chen J, et al. Study on improvement of extracellular production of recombinant Thermobifida fusca cutinase by Escherichia coli. Appl Biochem Biotechnol, 2011, 165: 666-675.

[8] Yamabhai M, Emrat S, Sukasem S, et al. Secretion of recombinant Bacillus hydrolytic enzymes using Escherichia coli expression systems. J Biotechnol, 2008, 133: 50-57.

[9] Delepelaire P. Type I secretion in gram-negative bacteria. Biochim Biophys Acta, 2004, 1694: 149-161.

[10] Holland I B, Schmitt L, Young J. Type I protein secretion in bacteria, the ABC-transporter dependent pathway. Mol Membr Biol, 2005, 22(1-2): 29-39.

[11] Koronakis V, Sharff A, Koronakis E, et al. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature, 2000, 405: 914-919.

[12] Zaitseva J, Jenewein S, Oswald C, et al. A molecular understanding of the catalytic cycle of the nucleotide-binding domain of the ABC transporter HlyB. Biochem Soc Trans, 2005, 33: 990-995.

[13] Sanchez-Magraner L, Viguera A R, Garcia-Pacios M, et al. The calcium-binding C-terminal domain of Echerichia coli alpha-hemolysin is a major determinant in the surface-active properties of the protein. J Biol Chem, 2007, 282(16): 11827-11835.

[14] Ludwig A, Jarchau T, Benz R, et al. The repeat domain of Escherichia coli haemolysin (HlyA) is responsible for its Ca2+-dependent binding to erythrocytes. Mol Gen Genet, 1988, 214: 553-561.

[15] Jones H E, Holland I B, Campbell A K. Direct measurement of free Ca2+shows different regulation of Ca2+ between the periplasm and the cytosol of Escherichia coli. Cell Calcium, 2002, 32:183-192.

[16] Kanonenberg K, Schwarz Christian K W, Schmitt L. Type I secretion systems-a story of appendices. Res Microbiol, 2013, 3: 1-9.

[17] Gentschev I, Dietrich G, Goebel W. The E. coli α-hemolysin secretion system and its use in vaccine development. Trends Microbiol, 2002, 10(1): 39-45.

[18] Mohammadian M, Fathi-Roudsari M, Mollania N, et al. Enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: purification and biochemical characterization. J Ind Microbiol Biotechnol, 2010, 37: 863-869.

[19] Martins L O, Soares C M, Pereira M M, et al. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem, 2002, 277(21): 18849-18859.

[20] Fernandez L A, Sola I, Enjuanes L, et al. Specific secretion of active single-chain Fv antibodies into the supernatants of Escherichia coli cultures by use of the hemolysin system. Appl Environ Microbiol, 2000, 66(11): 5024-5029.

[21] Bisi D C, Lampe D J. Secretion of anti-Plasmodium effector proteins from a natural Pantoea agglomerans isolate by using pelB and hlyA secretion signals. Appl Environ Microbiol, 2011, 77(13): 4669-4675.

[22] Narayanan N, Khan M, Chou C P. Enhancing functional expression of heterologous lipase B in Escherichis coli by extracellular secretion. J Ind Microbiol Biotechnol, 2010, 37: 349-361.

[23] Gomez-duarte O G, Pasetti M, Santiago A, et al. Expression, extracellular secretion, and immunogenicity of the Plasmodium falciparum sporozoite surface protein 2 in Salmonella vaccine strains. Infect Immun, 2001, 69(2): 1192-1198.

[24] Sugamata Y, Shiba T. Improved secretory production of recombinant proteins by random mutagenesis of hlyB, an alpha-hemolysin transporter from Escherichia coli. Appl Environ Microbiol, 2005, 71(2): 656-662.

[25] Li Y, Chen C X, Specht B U, et al. Cloning and hemolysin-mediated secretory expression of a codon-optimized synthetic human interleukin-6 gene in Escherichia coli. Protein Expr Purif, 2002, 25: 437-447.

[26] 宁亚蕾, 周立雄, 张卫军, 等. 利用α-溶血素系统分泌表达重组人白介素. 免疫学杂志, 2008, 24(4): 380-384. Ning Y L, Zhou L X, Zhang W J, et al. Extracellular secretion of recombinant hIL-6 utlizing UPEC α-hemolysin (HlyA) system. J Immunol, 2008, 24(4): 380-384.

[27] Su L, Chen S, Yi L, et al. Extracellular overexpression of recombinant Thermobifida fusca cutinase by alpha-hemolysin secretion system in E. coli BL21(DE3). Microb Cell Fact, 2012, 11: 1-8.

[28] Low K O, Mahadi N M, Rahim R A, et al. Enhanced secretory production of hemolysin-mediated cyclodextrin glucanotransferase in Escherichia coli by random mutagenesis of the ABC transporter system. J Biotechnol, 2010, 150: 453-459.

[29] Low K O, Mahadi N M, Rahim R A, et al. An effective extracellular protein secretion by an ABC transporter system in Escherichia coli: statistical modeling and optimization of cyclodextrin glucanotransferase secretory production. J Ind Microbiol Biotechnol, 2011, 38: 1587-1597.

[30] 张兆山. 大肠杆菌α-溶血素分泌表达系统的构建及应用初探. 北京: 军事科学医学院生物工程研究所, 2004. Zhang Z S. Study of construction and application of the recombinant secretion plasmid based on α-hemolysin secretion system. Beijing: Institute of Biological Engineering of the Military Academy of Medical Sciences, 2004.

[31] Bakkes P J, Jenewein S, Smits S H, et al. The rate of folding dictates substrate secretion by the Escherichia coli hemolysin type I secretion system. J Biol Chem, 2010, 285(52): 40573-40580.

[32] Schwarz C K, Landsberg D, Lenders C, et al. Using an E. coli Type I secretion system to secrete the mammalian, intracellular protein IFABP in its active form. J Biotechnol, 2012, 159: 155-161.

[33] Jumpertz T, Chervaux C, Racher K, et al. Mutations affecting the extreme C terminus of Escherichia coli haemolysin A reduce haemolytic activity by altering the folding of the toxin. Microbiology, 2010, 156: 2495-2505.

[34] Kenny B, Chervaux C, Holland I B. Evidence that residues -15 to -46 of the haemolysin secretion signal are involved in early steps in secretion, leading to recognition of the translocator. Mol Microbiol, 1994, 11: 99-109.

[35] Kenny B, Haigh R, Holland I B. Analysis of the haemolysin transport process through the secretion from Escherichia coli of PCM, CAT or beta-galactosidase fused to the Hly C-terminal signal domain. Mol Microbiol, 1991, 5(10): 2557-2568.

[36] Pimenta A L, Young J, Holland I B, et al. Antibody analysis of the localisation, expression and stability of HlyD, the MF Pcomponent of the E. coli haemolysin translocator. Mol Gen Genet, 1999, 261: 122-132.

[37] Schulein R, Gentschev S, Schlor I, et al. Identification and characterization of two functional domains of the haemolysin translocator protein HlyD. Mol Gen Genet, 1994, 245: 203-211.

[38] Pimenta A L, Racher K, Jamieson L, et al. Mutations in HlyD, part of the type I translocator for hemolysin secretion, affect the folding of the secreted toxin. J Bacteriol, 2005, 187(21): 7471-7480.

[39] Blight M A, Pimenta A L, Lazzaroni J C, et al. Identification and preliminary characterization of temperature-sensitive mutations affecting HlyB, the translocator required for the secretion of haemolysin (HlyA) from Escherichia coli. Mol Gen Genet, 1994, 245: 431-440.

[40] Sheps J A, Cheung I, Ling V. Hemolysin transport in Escherichia coli point mutants in HlyB compensate for a deletion in the predicted amphiphilic helix region of the HlyA signal. J Biol Chem, 1995, 270 (24): 14829-14834.

[41] Lee P S, Lee K H. Engineering HlyA hypersecretion in Escherichia coli based on proteomic and microarray analyses. Biotechnol Bioeng, 2005, 89: 195-205.

[42] Prateek G, Kelvin H L. Silent mutations result in HlyA hypersecretion by reducing intracellular HlyA protein aggregates. Biotechnol Bioeng, 2008, 101(5): 967-974.

[43] Vakharia H, German G J, Misra R. Isolation and characterization of Escherichia coli tolC mutants defective in secreting enzymatically active alpha-hemolysin. J Bacteriol, 2001, 183(23): 6908-6916.

[44] Nakano H, Kawakami Y, Nishimura H. Secretion of genetically-engineered dihydrofolate reductase from Escherichia coli using an E. coli alpha-hemolysin membrane translocation system. Appl Microbiol Biotechnol, 1992, 37(6): 765-771.

[45] Herm-Gotz A, Agop-Nersesian C, Munter S, et al. Rapid control of protein level in the apicomplexan Toxoplasma gondii. Nat Methods, 2007, 4: 1003-1005.

[46] Armstrong C M, Goldberg D E. An FKBP destabilization domain modulates protein levels in Plasmodium falciparum. Nat Meth, 2007, 4: 1007-1009.

[47] Banaszynski L A, Chen L C, Maynard-Smith L A, et al. A rapid reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell, 2006, 126: 995-1004.

[48] Sørensen H P, Mortensen K K. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol, 2005, 115: 113-128.

[1] WANG Pei, CHEN Kai, GAO Song. Production of Restriction Endonuclease Not I Utilizing CpG DNA Methylase M.Sss I Co-expression Vector[J]. China Biotechnology, 2017, 37(8): 51-58.
[2] LIU Yan-juan, LI Xu-juan, YUAN Hang, LIU Xian, GAO Yan-xiu, GONG Ming, ZOU Zhu-rong. Fusing the Acyl Carrier Protein Enhances the Solubility and Thermostability of the Recombinant Proteins in Escherichia coli[J]. China Biotechnology, 2017, 37(7): 115-123.
[3] LIN You-hong, CHENG Xia-ying, YAN Yi-wen, LIANG Zong-suo, YANG Zong-qi. Expression and Optimization Strategy of Recombinant Proteins in Chlamydomonas Chloroplast[J]. China Biotechnology, 2017, 37(10): 118-125.
[4] HU Li-qiang, ZHENG Wen, ZHONG Yi, DU Dan, YANG Hao, GONG Meng. Comparison of Expression and Activity of Antiviral Protein RC28 in Escherichia coli and Pichia pastoris[J]. China Biotechnology, 2017, 37(1): 14-20.
[5] WU Xue-long, YANG Xiao-hui, WANG Jun-qing, WANG Rui-ming. Expression and Characteristics of Apis mellifera NADPH-cytochrome P450 Reductase Gene in Escherichia coli[J]. China Biotechnology, 2016, 36(12): 28-35.
[6] ZHANG Qiang, LI Da shuai, LU Wen yu. Progress and Prospect of Heterologous Biosynthesis of Ttriterpenoids in Engineered Escherichia coli[J]. China Biotechnology, 2016, 36(11): 83-89.
[7] FANG Li xia, CAO Ying xiu, SONG Hao. Engineering Escherichia coli to Synthesize Free Fatty Acids: A Recent Progress[J]. China Biotechnology, 2016, 36(11): 90-97.
[8] QIU Li-juan, ZHAO Yu-jiao, LI Duo, HUANG Xin-wei, WANG Xiao-dan, XI Jue-min, PAN Yue, CHEN Jun-ying, SUN Qiang-ming. Expression and Immunological Analysis of Recombinant Tetravalent Envelope Domain III Protein of Dengue Virus[J]. China Biotechnology, 2016, 36(1): 1-6.
[9] XIONG Yuan-yuan, LU Chuan-dong, TAO Ye, ZHAO Jin-fang. Fermentative Production of L-lactic Acid from Wastepaper by Recombinant Escherichia coli WL204[J]. China Biotechnology, 2015, 35(5): 49-54.
[10] GUO Zhao-lai, BAI Xue-gui, YAN Jin-ping, CHEN Xuan-qin, LI Kun-zhi, XU Hui-ni. Prokaryotic Expression and Function Analysis of SoHb from Spinach[J]. China Biotechnology, 2015, 35(4): 54-59.
[11] QIAN Xin, GUO Hong-yan, ZHOU Qing-feng. Construction of 4-Hydroxyphenylacetate-3-hydroxylase A Expression Strain and Its Biotransformation Effect on Hydroxytyrosol[J]. China Biotechnology, 2015, 35(3): 56-60.
[12] LI Xing, YAO Wen-bing, XU Chen. Quality Control for PEGylated Recombinant Protein[J]. China Biotechnology, 2015, 35(12): 109-114.
[13] FENG Qi, WANG Ying. Optimization and Application of SLiCE in vitro Assembly Method[J]. China Biotechnology, 2015, 35(10): 59-65.
[14] LI Duo, YANG LI-juan, ZHAO Yu-jiao, PAN Yue, CHEN Jun-ying, FU Juan-juan, HUANG Xing-wei, QUE Li-juan, SUN Qiang-ming. Clone, Expression and Immunological Analysis of Type Ⅱ Dengue Virus NS1 Protein[J]. China Biotechnology, 2014, 34(9): 4-8.
[15] WANG Jian-feng, ZHANG Si-liang, WANG Yong. Pathway Assembly and Optimization in E. coli for de Novo Biosynthesis of Resveratrol[J]. China Biotechnology, 2014, 34(2): 71-77.