Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (4): 95-100    DOI: 10.13523/j.cb.20140415
    
Progress of in vivo Direct Cloning of Large DNA Fragments
ZHU Ying1,2, NI Meng-xiang1, FANG Hong-qing2
1. School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China ;
2. Beijing Institute of Biotechnology, Beijing 100071, China
Download: HTML   PDF(477KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cloning of interest DNA is necessary for functional analysis of genome sequences and research on metabolically engineered pathways of modern producer strains. Methods to precisely clone large DNA fragments include library constructing and screening, PCR amplification and various different DNA assembly methods in vitro. In addition, direct cloning by homologous recombination in vivo has more advantages in the cloning and engineering of long DNA sequences. The main methods of direct cloning of large DNA fragments in vivo via Red/ET recombination system and its applications were introduced.



Key wordsDirect cloning      Red/ET      In vivo recombination     
Received: 25 February 2014      Published: 25 April 2014
ZTFLH:  Q819  
Cite this article:

ZHU Ying, NI Meng-xiang, FANG Hong-qing. Progress of in vivo Direct Cloning of Large DNA Fragments. China Biotechnology, 2014, 34(4): 95-100.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140415     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I4/95


[1] Sleight S C, Bartley B A, Lieviant J A, et al. In-Fusion BioBrick assembly and re-engineering. Nucleic Acids Research, 2010, 38(8): 2624-2636.

[2] Thieme F, Engler C, Kandzia R, et al. Quick and clean cloning: a ligation-independent cloning strategy for selective cloning of specific PCR products from non-specific mixes. PLoS One, 2011, 6(6): e20556.

[3] Haffke M, Viola C, Nie Y, et al. Tandem recombineering by SLIC cloning and cre-Loxp fusion to generate multigene expression constructs for protein complex research. Methods Mol Biol, 2013, 1073: 131-140.

[4] Demidov V V, Bukanov N O, Frank-Kamenetskii D. Duplex DNA capture. Curr Issues Mol Biol, 2000, 2(1): 31-35.

[5] Wang R Y, Shi Z Y, Chen J C, et al. Cloning large gene clusters from E. coli using in vitro single-strand overlapping annealing. ACS Synth Biol, 2012, 1(7): 291-295.

[6] Gaida A, Becker M M, Schmid C D, et al. Cloning of the repertoire of individual Plasmodium falciparum var genes using transformation associated recombination(TAR). PLoS One, 2011, 6(3): e17782.

[7] Yonemura I, Nakada K, Sato A, et al. Direct cloning of full-length mouse mitochondrial DNA using a Bacillus subtilis genome vector. Gene, 2007, 391(1-2): 171-177.

[8] Bian X, Huang F, Stewart F A, et al. Direct cloning, genetic engineering, and heterologous expression of the syringolin biosynthetic gene cluster in E.coli through Red/ET recombineering. Chembiochem, 2012, 13(13): 1946-1952.

[9] Zhang Y, Muyrers J P, Rientjes J, et al. Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells. BMC Mol Bil, 2003, 4:1.

[10] Zhang Y, Buchholz F, Muyrers J P, et al. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet, 1998, 20(2): 123-128.

[11] Zhang Y, Muyrers J P, Testa G, et al. DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol, 2000, 18(12): 1314-1317.

[12] Sawitzke J A, Thomason L C, Costantino N, et al. Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods Enzymol, 2007, 421: 171-199.

[13] Thomason L, Court D L, Bubunenko M, et al. Recombineering: genetic engineering in bacteria using homologous recombination. Curr Protoc Mol Biol, 2007,1:16.

[14] Lee E C, Yu D, Martinez de Velasco J, et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics, 2001, 73(1): 56-65.

[15] Fu J, Bian X, Hu S, et al.Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol, 2012, 30(5): 440-446.

[16] Court D L, Sawitzke J A, Thomason L C. Genetic engineering using homologous recombination. Annu Rev Genet, 2002, 36: 361-388.

[17] Nawy T. Molecular biology: capturing sequences for bioprospecting. Nat Methods, 2012, 9(6): 532.

[18] Cobb R E, Zhao H. Direct cloning of large genomic sequences. Nat Biotechnol, 2012, 30(5): 405-406.

[19] Sharan S K, Thomason L C, Kuznetsov S G, et al. Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc, 2009, 4(2): 206-223.

[20] Liu P, Jenkins N A, Copeland N G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res, 2003, 13(3): 476-484.

[21] Venken K J, He Y, Hoskins R A, et al.P: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science, 2006, 314(5806): 1747-1751.

[22] Kotzamanis G, Huxley C. Recombining overlapping BACs into a single larger BAC. BMC Biotechnol, 2004, 4:1.

[23] Datta S, Costantino N, Court D L. A set of recombineering plasmids for gram-negative bacteria. Gene, 2006, 379: 109-115.

[24] Wenzel S C, Gross F, Zhang Y, et al. Heterologous expression of a myxobacterial natural products assembly line in pseudomonas via Red/ET recombineering. Chem Biol, 2005, 12(3): 349-356.

[25] Chai Y, Shan S, Weissman K J, et al. Heterologous expression and genetic engineering of the tubulysin biosynthetic gene cluster using Red/ET recombineering and inactivation mutagenesis. Chem Biol, 2012,19(3):361-371.

[26] Ongley S E, Bian X, Zhang Y, et al. High-titer heterologous production in E. coli of lyngbyatoxin, a protein kinase C activator from an uncultured marine cyanobacterium. ACS Chem Biol, 2013, 8(9):1888-1893.

[27] Wenzel S C, Müller R. Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr Opin Biotechnol, 2005, 16(6): 594-606.

[28] Hager S, Lsch S, Noll S, et al. Red/ET recombination with chimeric oligonucleotides allows rapid generation of BAC transgenes harboring full-length or truncated huntingtin cDNA. Biotechniques, 2012, 31(6):1-7.

[29] Watanabe M, Kurome M, Matsunari H, et al. The creation of transgenic pigs expressing human proteins using BAC-derived, full-length genes and intracytoplasmic sperm injection-mediated gene transfer. Transgenic Res, 2012, 21(3): 605-618.

[30] Wingler L M, Cornish V W. Reiterative recombination for the in vivo assembly of libraries of multigene pathways. Proc Natl Acad Sci USA, 2011, 108(37): 15135-15140.

[1] WU Qing, LIU Hui-yan, FANG Hai-tian, HE Jian-guo, HE Xiao-guang, YU Li-nan, WANG Meng-jiao. Metabolic Control Fermentation Mechanism and Breeding Strategies of Cytidine Excessive Biosynthesis in Bacillus amyloliquefaciens[J]. China Biotechnology, 2015, 35(9): 122-127.
[2] WANG Hong-su, GUAN Gui-jing, LIU Jin-xiang. Application of Alexa Fluor in Cytology and Molecular Biology[J]. China Biotechnology, 2015, 35(9): 71-77.
[3] ZHOU Li-jun, LIU Wen-juan, QI Yong-hao, LI Miao. SOCS3 Negatively Regulates AKT through JNK and STAT3 Signal Pathways[J]. China Biotechnology, 2015, 35(9): 50-56.
[4] LIANG Gao-feng, HE Xiang-feng, CHEN Bao-an. Progress in the Research of miRNA on Tumor Molecular Diagnosis and Therapy[J]. China Biotechnology, 2015, 35(9): 57-65.
[5] WEI Yan, WANG Huan-qin, WU Meng, ZHANG Feng-juan, LIANG Guo-dong, ZHU Wu-yang. Construction and Identification of the Cell Line for Detecting Flaviviruses[J]. China Biotechnology, 2015, 35(9): 35-41.
[6] ZHAO Yang, TIAN Hai-shan, LI Xiao-kun, JIANG Chao . The Research Progress of Fibroblast Growth Factor 20[J]. China Biotechnology, 2015, 35(8): 103-108.
[7] KANG Xue-jun, YANG Yi-shu . Research Progress on in vitro Models of HIV-1 Latency[J]. China Biotechnology, 2015, 35(8): 96-102.
[8] LI Hong-chang, YUAN Lin, ZHANG Ling-qiang . Construction of Transgenic Mice and Phenotypic Analysis of Tumor Suppressor PTEN[J]. China Biotechnology, 2015, 35(8): 1-8.
[9] GUO Wei-ting, ZHANG Hui, ZHA Dong-feng, HUANG Han-feng, HUANG Jing, GAO Hong-liang, CHANG Zhong-yi, JIN Ming-fei, LU Wei . A Rapid Method of Screening for Thermostable Transglutaminase from Streptomyces mobaraensis[J]. China Biotechnology, 2015, 35(8): 83-89.
[10] ZHU Zhi-jian, LIAN Kai-qi, YANG Fan, ZHANG Wei, ZHENG Hai-xue, YANG Xiao-pu . Establishment of a Stable CHO-677 Cell Line Expressing Murine αvβ6 Integrin[J]. China Biotechnology, 2015, 35(8): 23-29.
[11] HUANG Peng, LI Wen-shu, XIE Jun, BAO Jian-ying, CAO Xiao-e, YU Long, XU Yi-xin . Expression of Human Lysozyme-like Protein 6 in Pichia pastoris and Analysis of Enzymatic Activity of the Protein[J]. China Biotechnology, 2015, 35(8): 30-37.
[12] REN Qin, GUO Zhi-hong, WANG Ya-jun, XIE Zhong-kui, WANG Ruo-yu. RNA Interference and Its Application in Enhancing Crop Resistance Against Harmful Eukaryotes[J]. China Biotechnology, 2015, 35(6): 80-89.
[13] LI Jia-xin, FENG Wei, WANG Zhi-gang, WANG Yan-feng. CRISPR/Cas9 System and Its Applications in Transgenic Animals[J]. China Biotechnology, 2015, 35(6): 109-115.
[14] ZHANG Chao, XIANG Li-na, CHEN De-pei, LÜ Xin-xin, ZHAO Yi-tong, WANG Lu-yao, XIAO Jian, ZHANG Hong-yu. The Development of the Study on bFGF Promote the Nerve Injury Repair[J]. China Biotechnology, 2015, 35(6): 75-79.
[15] JIA Cui-li, ZHANG Hua-wei, WANG Bin-bin, ZHU Hong-ji, QIAO Jian-jun. Advances in Research on Natural Competence of Gram-positive Bacteria and Its Physiological Properties[J]. China Biotechnology, 2015, 35(6): 90-100.