Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (9): 50-56    DOI: 10.13523/j.cb.20150908
    
SOCS3 Negatively Regulates AKT through JNK and STAT3 Signal Pathways
ZHOU Li-jun, LIU Wen-juan, QI Yong-hao, LI Miao
School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(604KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

AKT, also known as protein kinase B, is a pivotal component of pathways associated with cell survival, metabolism, invasion and metastasis. Suppressor of cytokine signaling 3 (SOCS3) is a negative regulator of Janus protein kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway and may involve in the phosphorylation of AKT and tumorigenesis. The review is focused on the biological function of SOCS3 and the role of SOCS3 in AKT signal pathway, which may be beneficial to targeting AKT signal pathway in cancer therapy.



Key wordsSOCS3      AKT      Anti-tumor      Phosphorylation     
Received: 18 May 2015      Published: 25 September 2015
ZTFLH:  Q819  
Cite this article:

ZHOU Li-jun, LIU Wen-juan, QI Yong-hao, LI Miao. SOCS3 Negatively Regulates AKT through JNK and STAT3 Signal Pathways. China Biotechnology, 2015, 35(9): 50-56.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150908     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I9/50


[1] 王鲁建,孙丽梅. 乳腺癌中AKT激活与耐药蛋白表达相关性. 中国组织化学与细胞化学杂志,2012, 21(4): 401-405. Wang L J, Sun L M. AKT activation and breast cancer resistance protein expression correlated. Chinese Journal of Histochemistry and Cytochemistry, 2012, 21(4): 401-405.

[2] 刘伦华,楼丽广. 丝/苏氨酸蛋白激酶Akt及其靶向药物研究进展. 中国药理学通报,2006, 22(1): 1-4. Liu L H, Lou L G. Advance in drug targeting serine/threonine protein kinase Akt. Chinese Phamacological Bulletin, 2006, 22(1): 1-4.

[3] Yu Z B, Bai L, Qian P, et al. Restoration of SOCS3 suppresses human lung adenocarcinoma cell growth by down regulating activation of Erk1/2, Akt apart from STAT3. Cell Biol Int, 2009, 33(9): 995-1001.

[4] Gardai S J, Hildeman D A, Frankel S K, et al. Phosphorylation of Bax Ser (184) by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem, 2004, 279(20): 21085-21095.

[5] Linseman D A, Butts B D, Precht T A, et al. Glycogen synthase kinase-3 beta phosphorylates bax and promotes its mitochondrial localziation during neuronal apoptosis. J Neurosci, 2004, 24(44): 9993-10002.

[6] Zha J, Harada H, Yang E, et al. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-XL. Cell, 1996, 87(4): 619-628.

[7] 王维,张琍. PI3K/Ak信号转导通路的研究进展. 现代医药卫生,2010, 26(7): 1051-1052. Wang W, Zhang L. Progress pathway PI3K/Akt signal transduction. Modern Medicine & Health, 2010, 26(7): 1051-1052.

[8] Restuccia D F, Hemmings B A. Blocking Akt-ivity. Science, 2009, 325(5944): 1083-1084.

[9] 张超,章雄文,丁健. Akt-mTOR的互动与癌症的发生. 生命科学,2007, 19(1): 21-26. Zhang C, Zhang X W, Ding J. Akt-mTOR interplaying and carcinogenesis. Chinese Bulletin of Life Sciences, 2007, 19(1): 21-26.

[10] Kok K, Geering B, Vanhaesebroeck B. Regulation of phosphoinositide 3-kinase expression in health and disease. Trends Biochem Sci, 2009, 34(3): 115-127.

[11] Gills J J, Dennis P A. The development of phosphatidylinositol ether lipid analogues as inhibitors of the serine/threonine kinase, Akt. Expert Opin Emerg Dr, 2004, 13(7): 787-797.

[12] Scheid M P, Woodgett J R. Unravelling the activation mechanisms of protein kinase B/Akt. Febs Lett, 2003, 546(1): 108-112.

[13] Mayo L D, Donner D B. The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci, 2002, 27(9): 462-467.

[14] Ye B, Jiang L L, Xu H T, et al. Expression of PI3K/AKT pathway in gastric cancer and its blockade suppresses tumor growth and metastasis. Int J Immunopath Ph, 2012, 25(3): 627-636.

[15] Hovelmann S, Beckers T L, Schmidt M. Molecular alterations in apoptotic pathways after PKB/Akt-mediated chemoresistance in NCI H460 cells. Brit J Cancer, 2004, 90(12): 2370-2377.

[16] Yu L, Alva A, Su H, et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science, 2004, 304(5676): 1500-1502.

[17] Ren S, Gao C, Zhang L, et al. PI3K inhibitors changed the p53-induced response of Saos-2 cells from growth arrest to apoptosis. Biochem Bioph Res Co, 2003, 308(1): 120-125.

[18] Yang W L, Wang J, Chan C H, et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science, 2009, 325(5944): 1134-1138.

[19] 梁若飞,刘艳辉. PI3K/Akt/mTOR信号通路靶向治疗胶质细胞瘤研究进展. 中华神经外科疾病研究杂志,2013, 12(4): 375-377. Liang R F, Liu Y H. Research progress of targeting PI3K/Akt/mTOR signaling pathway on glioma therapy. Chinese Journal of Department of Neurosurgery Disease Research, 2013, 12(4): 375-377.

[20] Kubota N, Okada S, Inada T, et al. Wortmanin sensitizes human glioblastoma cell lines carrying mutant and wild type TP53 gene to radiation. Cancer Lett, 2000, 161(2): 141-147.

[21] Hu L, Zaloudek C, Mills G B, et al. In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3- kinase inhibitor (LY294002). Clin Cancer Res, 2000, 6(3): 880-886.

[22] Cheng Y, Zhang y, Zhang L, et al. MK-2206, a novel allosteric inhibitor of AKT, synergizes with gefitinib against malignant glioma via modulating both autophagy and apoptosis. Mol Cancer Ther, 2012, 11(1): 154-164.

[23] Schnetzke U, Fischer M, Kuhn A K, et al. The E3 ubiquitin ligase TRAF6 inhibits LPS-induced AKT activation in FLT3-ITD-positive MV4-11 AML cells. J Cancer Res Clin Oncol, 2013, 139(4): 605-615.

[24] Luo J, Manning, B D, Cantley L C. Targeting the PI3K-Akt pathway in human cancer: Rationale and promise. Cancer Cell, 2003, 4(4): 257-262.

[25] 邢长英,归绥琪. SOCS3作用机制与妇产科研究进展. 生殖与避孕,2007, 27(4): 287-291. Xing C Y, Gui S Q. Research progress of SOCS3's mechanisms and obstetrics and gynecology. Journal of Reproduction & Contraception, 2007, 27(4): 287-291.

[26] 牛丽娜,陈显久. SOCS3结构和作用机制研究进展. 现代肿瘤医学,2014, 22(11): 2757-2760. Niu L N, Chen X J. Research progress of SOCS3 on its structure and mechanisms. Journal of Modern Oncology, 2014, 22(11): 2757-2760.

[27] 秦伟. 细胞因子信号转导抑制蛋白3与骨髓增殖性肿瘤关系的研究进展. 中国实验血液学杂志,2010, 18(4): 1101-1104. Qin W. Research advances on relationship suppressor of cytokine signaling and myeloproliferative neoplasms. Journal of Experimental Hematology, 2010, 18(4): 1101-1104.

[28] 薛帆,崔雪薇,张春东. 细胞因子信号传导抑制蛋白-3(SOCS-3)作用的研究进展. 中国当代医药,2011, 18(4): 18-19. Xue F, Cui X W, Zhang C D. Research progress of SOCS3 on its function. Journal of China Modern Medicine, 2011, 18(4): 18-19.

[29] 林娜,姚晓光,李南方. 细胞因子信号转导抑制因子3的研究进展. 中国医学科学院学报,2012, 34(2): 178-182. Lin N, Yao X G, Li N F. Research advances in suppressor of cytokine signaling 3. Acta Academiae Medicinae Sinicae, 2012, 34(2): 178-182.

[30] 李晟,王大文,朱诗建,等. 细胞因子信号传导抑制蛋白-3在前列腺癌中作用的研究进展. 临床泌尿外科杂志, 2014, 29(9): 845-847. Li S, Wang D W, Zhu S J, et al. Research progress of suppressor of cytokine signaling-3 in prostate cancer. The Journal of Clinical Department of Urology, 2014,29(9): 845-847.

[31] Danielle L, Douglasj K R, Ilton H. SOCS proteins: negative regulators of cytokine signaling. Stem Cells, 2001, 19(5): 378-387.

[32] Liu R Y, Zeng Y Y, Zhe Z. JAK/STAT3 signaling is required for TGF-beta-induced epithelial-mesenchymal transition in lung cancer cells. Int J Oncol, 2014, 44(5): 1643-1651.

[33] Wang S W, Sun Y M. The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer (review). Int J Oncol, 2014, 44(4): 1032-1040.

[34] Yang G L, Ma F, Zhong M X. Interleukin-11 induces the expression of matrix metalloproteinase 13 in gastric cancer SCH cells partly via the PI3K-AKT and JAK-STAT3 pathways. Mol Med Rep, 2014, 9(4): 1371-1375.

[35] Lo H W, Cao X, Zhu H, et al. Constitutively activated STAT3 frequently with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to lressa and alkylators. Clin Cancer Res, 2008, 14(19): 6042-6054.

[36] Wu K, Chang Q S, Lu Y J, et al. Gefitinib resistance resulted from STAT3-mediated Akt activation in lung cancer cells. Oncotarget, 2013, 4(12): 2430-2437.

[37] Sharma D, Saxena N K, Vertino P M, et al. Leptin promotes the proliferative response and invasiveness in human endometrial cancer cells by activating multiple signal-transduction pathways. Endocr-related Cancer, 2006, 13(2): 629-640.

[38] Saxena N K, Titus M A, Ding X, et al. Leptin as a novel profibrogenic cytokine in hepatic stellate cells: mitogenesis and inhibition of apoptosis mediated by extracellular regu-lated kinase (Erk) and Akt phosphorylation. Faseb J, 2004, 18(11): 1612-1614.

[39] Bjorbaek C, El-Haschimi K, Frantz J D, et al. The role of SOCS-3 in leptin signaling and leptin resistance. J of Biol Chem, 1999, 274(42): 30059-30065.

[40] Bjorbaek C, Elmquist J K, Frantz J D, et al. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell, 1998, 1(4): 619-625.

[41] Sharm D, Wang J, Ping P, et al. Adiponectin antagonizes the oncogenic actions of leptin in hepatocellular carcinogenesis. Hepatology, 2010, 52(5): 1713-1722.

[42] Francipane M G, Eterno V, Spina V, et al. Suppressor of cytokine signaling 3 sensitizes anaplastic thyroid cancer to standard chemotherapy. Cancer Res, 2009, 69(15): 6141-6148.

[43] Frobose H, Ronn S G, Heding P E, et al. Suppressor of cytokine signaling-3 inhibits interleukin-1 signaling by targeting the TRAF-6/TAK1 complex. Mol Endocrinol, 2006, 20(7): 1587-1596.

[44] Yajima T, Murofushi Y, Zhou H B, et al. Absence of SOCS3 in the cardiomyocyte increases mortality in a gp130-dependent manner accompanied by contractile dysfunction and ventricular arrhythmias. Circulation, 2011, 124(24): 2690-2701.

[45] Nam K W, Chae S, Song H Y, et al. The role of wogonin in controlling SOCS3 expression in neuronal cells. Biochem Bioph Res Co, 2014, 450(4): 1518-1524.

[46] 林芳,崔强,钱程. 携带 SOCS-3 基因的溶瘤腺病毒的构建及体外抗肿瘤活性的研究. 浙江理工大学学报,2008, 25(1): 106-112. Lin F, Cui Q, Qian C. Construction and in vitro studies carried SOCS-3 oncolytic adenovirus gene antitumor activity. Journal of Zhejiang Sci-Tech University, 2008, 25(1): 106-112.

[1] OUYANG Qin,LI Yan-meng,XU An-jian,ZHOU Dong-hu,LI Zhen-kun,HUANG Jian. GTF2H2 Affects the Proliferation and Migration of Hep3B Hepatocellular Carcinoma Cells by Mediating AKT Signal Pathway[J]. China Biotechnology, 2021, 41(6): 4-12.
[2] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[3] YANG Wei,SONG Fang-xiang,WANG Shuai,ZHANG Li,WANG Hong-xia,LI Yan. Preparation and Application of Janus Nanoparticles in Drug Delivery System[J]. China Biotechnology, 2020, 40(7): 70-81.
[4] TONG Mei,CHENG Yong-qing,LIU Jin-yi,XU Chen. Construction of a Strain for Promoting Production of Small Molecule Antibodies in Periplasmic Space of Escherichia coli[J]. China Biotechnology, 2020, 40(5): 48-56.
[5] LU Zhong-teng,HU Gao-wei. Identification Methods of Novel Cell Penetrating Peptides and Application in Antitumor Therapy[J]. China Biotechnology, 2019, 39(12): 50-55.
[6] XU Yan,LIU Zheng-yun,ZHANG Wan-ling,WANG Sheng-yu,WANG Huan. Effect of Targeted Interference with TAGLN Expression on Biological Behavior of HBV-Positive Hepatocellular Carcinoma Cells and Its Mechanisms[J]. China Biotechnology, 2019, 39(11): 13-21.
[7] Si LI,Yi-zhou ZHAI,Yu-ting LU,Fu-jun WANG,Jian ZHAO. The Optimization of A Novel Human-derived Cell-penetrating Peptide Used for Anti-cancer Treatment[J]. China Biotechnology, 2018, 38(7): 40-49.
[8] LIU Li-ping, ZHANG Chun, YIN Shuang, WANG Qi, ZHANG Yao, YU Rong, LIU Yong-dong, SU Zhi-guo. Design, Preparation, Characterization and Preliminary Evaluation of an Albumin Binding Peptide-Doxorubicin Conjugate[J]. China Biotechnology, 2017, 37(4): 68-75.
[9] CHEN Kun, CAO Xue-wei, ZHANG Qin, ZHAO Jian, WANG Fu-jun. Application of EGF-like Growth Factor-derived Tumor-homing Peptide for Antineoplastic Protein[J]. China Biotechnology, 2017, 37(3): 1-9.
[10] CHEN Wen-jie, WANG Jian-yang, YIN Ming, YIN Chang-chang. Progress on Anti-cancer Molecule Mechanism of Human Umbilical Cord Mesenchymal Stem Cells[J]. China Biotechnology, 2017, 37(3): 78-82.
[11] LI Ai-fang, GU Yue, LI Xue-ru, SUN Hui, ZHA He, XIE Jia-qing, ZHAO Jia-li, ZHOU Lan. Effects of S100A6 on Proliferation and Migration of Human Cervical Cancer Cells and Its Mechanism[J]. China Biotechnology, 2017, 37(2): 8-14.
[12] DONG Jian-yi, WANG Xin-xin, WANG Kang-wei, CHEN Jun, LI Hui-ling, WANG Fu-jin, WANG Ai-guo, WANG Jing-yu. MiR-146a/b Expression and Related up and Down-stream Regulatory Mechanisms in Human Hepatoma Cells[J]. China Biotechnology, 2016, 36(12): 8-14.
[13] WANG Juan-juan, ZHANG Peng, HUANG Zhi-hong, CHEN Jia-jin, LI Qiang, WANG Guo-cai, LI Yao-lan, JIANG Jian-wei. Pp-10, a Monomer Purified from Paris polyphylla, Induces Apoptosis and Autophagy of Human Gastric Carcinoma BGC-823 Cells by Inhibiting PI3K/Akt Signaling Pathway[J]. China Biotechnology, 2015, 35(2): 31-37.
[14] WANG Qi-fan, XUE Ying, FENG Xin-wei, ZHANG Ge. Prokaryotic Expression, Purification and Antitumor Activity Identification of Tumor Targeting iRGD-CDD Fusion Protein[J]. China Biotechnology, 2014, 34(12): 1-9.
[15] GAO Xing-jie, ZHANG Yi, SU Chao, FU Xue, SHI Xue-bin, YIN Jie, HE Jin-yan, WANG Xin-ting, YAO Zhi, YANG Jie. The Analysis and Preparation of the Stress Associated Phosphorylation Antibodies Specific for the T103 Site of Tudor-SN Protein[J]. China Biotechnology, 2014, 34(06): 55-60.