Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (10): 33-38    DOI:
    
Bioinformatics Prediction of microRNAs and Targets from Safflower
DONG Yuan-yuan1,2, LI Hai-yan2, LI Xiao-kun1,2, YANG Shu-lin 1
1. School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2. Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
Download: HTML   PDF(613KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  miRNA is a kind of noncoding RNA in post regulation, plant miRNA come from RNA precursor with hairpin structure. Mature miRNA interacts with a member of the ARGONAUTE protein complexes. The protein complexes are typically located in the 3' untranslated region of mRNAs leading to inhibition of gene expression. miRNAs were typically conserved in plants. miRNAs sequences database were matched with EST sequences of safflower, 109 safflower microRNAs and 385 targets were predicted out. miRNA target genes from safflower were predicted to encode transcription factors or proteins that regulate cell growth and development, signaling, and metabolism.

Key wordsSafflower      Target prediction      microRNA     
Received: 25 May 2012      Published: 25 October 2012
ZTFLH:  Q789  
Cite this article:

DONG Yuan-yuan, LI Hai-yan, LI Xiao-kun, YANG Shu-lin. Bioinformatics Prediction of microRNAs and Targets from Safflower. China Biotechnology, 2012, 32(10): 33-38.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I10/33

[1] Rhoades M W, Reinhart B J, Lim L P, et al. Prediction of plant microRNA targets. Cell, 2002,110:513-520.
[2] Jha A, Shankar R. Employing machine learning for reliable miRNA target identification in plants. BMC Genomics, 2011,12:636.
[3] Li H, Dong Y, Sun Y, et al. Investigation of the microRNAs in safflower seed, leaf, and petal by high-throughput sequencing. Planta, 2011,233:611-619.
[4] Chavali P L, Funa K, Chavali S. Cis-regulation of microRNA expression by scaffold/matrix-attachment regions. Nucleic Acids Res, 2011,39:6908-6918.
[5] Turner M L, Schnorfeil F M, Brocker T. MicroRNAs regulate dendritic cell differentiation and function. J Immunol, 2011,187:3911-3917.
[6] Wang Y, Blelloch R. Cell cycle regulation by microRNAs in stem cells. Results Probl Cell Differ, 2011,53:459-472.
[7] Griffiths-Jones S, Saini H K, van Dongen S, et al. miRBase: tools for microRNA genomics. Nucleic Acids Res, 2008,36:154-158.
[8] Li H, Dong Y, Yang J, et al. De novo transcriptome of safflower and the identification of putative genes for oleosin and the biosynthesis of flavonoids. PLoS One, 2012,7:e30987.
[9] Joshi T, Yan Z, Libault M, et al. Prediction of novel miRNAs and associated target genes in Glycine max. BMC Bioinformatics, 2010,11:Suppl 1:S14.
[10] Maziere P, Enright A J. Prediction of microRNA targets. Drug Discov Today, 2007,12:452-458.
[11] Rehmsmeier M. Prediction of microRNA targets. Methods Mol Biol, 2006,342:87-99.
[12] Guleria P, Yadav S K. Identification of miR414 and expression analysis of conserved miRNAs from Stevia rebaudiana. Genomics Proteomics Bioinformatics, 2011,9:211-217.
[13] Llave C, Kasschau K D, Rector M A, et al. Endogenous and silencing-associated small RNAs in plants. Plant Cell, 2002,14:1605-1619.
[14] Van Wynsberghe P M, Chan S P, Slack F J, et al. Analysis of microRNA expression and function. Methods Cell Biol, 2011,106:219-252.
[15] Axtell M J, Westholm J O, Lai E C. Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol, 2011,12:221.
[16] Fahlgren N, Jogdeo S, Kasschau K D, et al. MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell, 2010,22:1074-1089.
[17] Bernstein E, Caudy A A, Hammond S M, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001,409:363-366.
[18] Shu W, Ni M, Bo X, et al. In silico genetic robustness analysis of secondary structural elements in the miRNA gene. J Mol Evol, 2008, 67:560-569.
[19] Zhang Z, Wei L, Zou X, et al. Submergence-responsive MicroRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Ann Bot, 2008,102:509-519.
[20] Zhu Q H, Spriggs A, Matthew L, et al. A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res, 2008,18:1456-1465.
[21] Zhao C Z, Xia H, Frazier T P, et al. Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol, 2010,10:3.
[22] Wei Y, Chen S, Yang P, et al. Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust. Genome Biol, 2009,10:R6.
[23] Meyers B C, Axtell M J, Bartel B, et al. Criteria for annotation of plant MicroRNAs. Plant Cell, 2008,20:3186-3190.
[24] Chung K, Tasaka M. RPT2a, a 26S proteasome AAA-ATPase, is directly involved in Arabidopsis CC-NBS-LRR protein uni-1D-induced signaling pathways. Plant Cell Physiol, 2011,52:1657-1664.
[25] Jamburuthugoda V K, Eickbush T H. The reverse transcriptase encoded by the non-LTR retrotransposon R2 is as error-prone as that encoded by HIV-1. J Mol Biol, 2011,407:661-672.
[26] Lu S X, Knowles S M, Webb C J, et al. The Jumonji C domain-containing protein JMJ30 regulates period length in the Arabidopsis circadian clock. Plant Physiol, 2011,155:906-915.
[27] Chapman E J, Carrington J C. Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet, 2007,8:884-896.
[28] Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008,320:1185-1190.
[1] CHEN Yu-qiong,TAN Wen-hua,LIU Hai-feng,CHEN Gen. Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression[J]. China Biotechnology, 2021, 41(5): 8-16.
[2] Pan-hong ZHANG,Lian-lian LI,Xiu-mei ZHANG,Jia-jun CUI,Yin-jie JIANG. Advances in the Relationship Between microRNA and Chemotherapy Resistance of Lung Cancer[J]. China Biotechnology, 2019, 39(7): 79-84.
[3] SHEN Bing-lei,WANG Yu-xuan,HAN Shuo,LI Xi,YANG Zhuo-ni-na,ZOU Zi-wen,LIU Juan. Research Progress of Non-coding RNA in Autophagy[J]. China Biotechnology, 2019, 39(12): 56-63.
[4] LUO Jia, SHEN Lin yuan, LI Qiang, LI Xue wei, ZHANG Shun hua, ZHU Li. Research Progress of RNA Editing in Mammal Acting on Non-coding RNA[J]. China Biotechnology, 2016, 36(11): 76-82.
[5] XIN Jing, XU Yin-sheng, ZHANG Fang, SHENG Wang. The Function and Mechanism of MicroRNA-124 in Human Cervical Cancer[J]. China Biotechnology, 2015, 35(10): 13-19.
[6] MAN Chao-lai, TANG Gao-xia, ZHAO Li, LI Feng, ZHEN Xin. DNA Methylation and microRNAs[J]. China Biotechnology, 2014, 34(8): 81-87.
[7] PANG Shi-feng, JIANG Chao, LI Wen-rong, FENG Zhi-guo, LIU Min, CHU Sheng-hui, LI Xiao-kun, ZHENG Ke-qin. Cloning of Soybean Oleosin and EGF Fusion Gene and Expression in Safflower Seeds[J]. China Biotechnology, 2014, 34(4): 71-77.
[8] MAN Chao-lai, YANG Mei-ling. Research Progress in Circulating MicroRNAs of Body Fluid[J]. China Biotechnology, 2014, 34(2): 104-108.
[9] MAN Chao-lai, CHANG Yang, TANG Gao-xia, ZHAO Li, LI Feng, ZHEN Xin, MI Xiao-ju. Research Progress of Genetic Adjuvant[J]. China Biotechnology, 2013, 33(7): 112-117.
[10] XU Ying-chen, GUAN Li-dong, ZHOU Jun-nian, ZENG Quan, YUAN Hong-feng, LI Si-ting, GUAN Zhao-xuan, HE Li-juan, NAN Xue, CHEN Lin, YUE Wen, PEI Xue-tao. Isolation and Identification of Liver Cancer Stem Cells and Analysis of Differentially Expressed MicroRNAs[J]. China Biotechnology, 2013, 33(1): 1-7.
[11] TANG De-ping, MAO Ai-hong, LIAO Shi-qi, XUE Lin-gui, ZHANG Bing-lin. The Types of siRNA Off-target Effects and the Strategies for Mitigation[J]. China Biotechnology, 2012, 32(07): 113-119.
[12] SHEN Jian, ZHANG Yue, PAN Qiu-hui, SUN Fen-yong. Bioinformatics Analysis and Prediction of miR-17-92 Cluster Mediated Regulatory Network[J]. China Biotechnology, 2012, 32(03): 69-75.
[13] WANG Qi-Zhao, LV Ying-Hui, XIAO Wei-Dong, DIAO Yong, HU Rui-An. The Clinical Researches of Recombinant Adeno-associated Vector[J]. China Biotechnology, 2010, 30(01): 73-79.
[14] CU Feng, GAO Chun-Fang. Circulating RNA and miRNA in Blood: Potential Applications as Tumor Markers[J]. China Biotechnology, 2009, 29(11): 94-101.
[15] CAO Sun-Qiong Chang-shan REN. Construction and identification of NBS1-targeting microRNA expressing eukaryotic vector[J]. China Biotechnology, 2008, 28(4): 7-11.