Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (06): 49-57    DOI:
    
Over-expression of AGM3, a Foreign Mutant Gene of AGAMOUS, Represses Flowering and Alters Floral Organ Development in Transgenic Tobacco
CAO Guan-lin, AN Xin-min, LONG Cui, BO Wen-hao, ZHANG Zhi-yi
National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
Download: HTML   PDF(934KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to investigate floral inhibition through over-expression of AGM3 in heterologous plants, a dominant negative mutation construct gene, 35S-AGM3-E9 was transformed into Nicotiana tabacum via the Agrobacterium-mediated method. The results of PCR and Southern analysis showed that the gene of AGM3 was integrated into tobacco genome. Furthermore, the data of real-time qRT-PCR analysis showed that AGM3 was expressed in all the transgenic lines and the transcripts of AGM3 were significantly different among these transgenic lines. The results of the investigation indicated that 46.7% of the transgenic lines did not flower during their life cycles, and flowering time of the 33.3% lines was delayed 29.7 days averagely, while the rest 20% of transgenic lines flowered at the same time with the wild type control. In addition, over-expression of AGM3 in transgenic tobacco plants caused decreased number of sepals, deep clefts on corolla, morphological changes of petals and stamens, and numerical change of stamens. The facts suggested that over-expression of AGM3 effectively suppress floral development, which laid a foundation for genetically engineered sterility.



Key wordsAGM3      Dominant negative mutation      Represses flowering      Floral organ development      Tobacco     
Received: 24 December 2010      Published: 28 June 2011
ZTFLH:  Q786  
Cite this article:

CAO Guan-lin, AN Xin-min, LONG Cui, BO Wen-hao, ZHANG Zhi-yi. Over-expression of AGM3, a Foreign Mutant Gene of AGAMOUS, Represses Flowering and Alters Floral Organ Development in Transgenic Tobacco. China Biotechnology, 2011, 31(06): 49-57.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I06/49

[1] Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353(6339): 31-37.
[2] Yanofsky M F, Ma H, Bowman J L, et al. The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature, 1990, 346(6279): 35-39.
[3] Drews G N, Bowman J L, Meyerowitz E M. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell, 1991, 65(6): 991-1002.
[4] Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 2001, 409(6819): 525-529.
[5] Theissen G. Development of floral organ identity: stories from the MADS house. Current Opinon in Plant Biology, 2001, 4(1): 75-85.
[6] Bowman J L, Drews G N, Meyerowitz E M. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. The Plant Cell, 1991, 3(8): 749-758.
[7] Mizukami Y, Ma H. Separation of AG function in floral meristem determinacy from that in reproductive organ identity by expressing antisense AG RNA. Plant Molecular Biology, 1995, 28(5): 767-784.
[8] van der Krol A R, Brunelle A, Tsuchimoto S, et al. Functional analysis of petunia floral homeotic MADS box gene pMADS1. Genes & Development, 1993, 7(7A): 1214-1228.
[9] Kempin S A, Mandel M A, Yanofsky M F. Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1. Plant Physiology, 1993, 103(4): 1041-1046.
[10] Mandel M A, Bowman J L, Kempin S A, et al. Manipulation of flower structure in transgenic tobacco. Cell, 1992, 71(1): 133-143.
[11] Pnueli L, Hareven D, Rounsley S D, et al. Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. The Plant Cell, 1994, 6(2): 163-173.
[12] 高志红, 张玉明, 王珊, 等. 植物花发育调控基因AGAMOUS的研究进展. 西北植物学报, 2008, 28(3): 638-644. Gao Z H, Zhang M Y, Wang S, et al. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(3): 638-644.
[13] Kato T, Hibino T. Isolation and expression analysis of AGAMOUS-like genes from Eucalyptus grandis. Plant Biotechnology, 2009, 26(1): 121-124.
[14] Cartolano M, Efremova N, Kuckenberg M, et al. Enhanced AGAMOUS expression in the centre of the Arabidopsis flower causes ectopic expression over its outer expression boundaries. Planta, 2009, 230(4): 857-862.
[15] Narumi T, Aida R, Niki T, et al. Chimeric AGAMOUS repressor induces serrated petal phenotype in Torenia fournieri similar to that induced by cytokinin application. Plant Biotechnology, 2008, 25(1): 45-53.
[16] Sheppard D. Dominant negative mutants: tools for the study of protein function in vitro and in vivo. American Journal of Respiratory Cell and Molecular Biology, 1994, 11(1): 1-6.
[17] Mizukami Y, Huang H, Tudor M, et al. Functional domains of the floral regulator AGAMOUS: Characterization of the DNA binding domain and analysis of dominant negative mutations. The Plant Cell, 1996, 8(5): 831-845.
[18] 林元震. 甜杨葡萄糖-6-磷酸脱氢酶基因克隆及结构分析与功能鉴定. 北京: 北京林业大学, 生物科学与技术学院, 2006. Lin Y Z. Gene Cloning, Structure Analysis and Function Identification of Glucose-6-phosphate Dehydrogenase from Populus suaveolens. Beijing: Beijing Forestry University, College of Biological Sciences and Biotechnology, 2006.
[19] 曹冠琳, 安新民, 薄文浩, 等. PTLF-PTAG-IR 对转基因烟草开花的抑制效应. 基因组学与应用生物学, 2010, 29(3): 411-418. Cao G L, An X M, Bo W H, et al. Genomics and Applied Biology, 2010, 29(3):411-418.
[20] 郭余龙, 祝钦泷, 郑尚永, 等. 棉花MADS框基因GhMADS3的克隆及其组成型表达对烟草花器官决定的影响. 遗传学报, 2007, 34(6): 527-535. Guo Y L, Zhu Q L, Zheng S Y, et al. Acta Genetica Sinica, 2007, 34(6): 527-535.
[21] Tani E, Polidoros A N, Flemetakis E, et al. Characterization and expression analysis of AGAMOUS-like, SEEDSTICK-like, and SEPALLATA-like MADS-box genes in peach (Prunus persica) fruit. Plant Physiology and Biochemistry, 2009, 47(8): 690-700.
[22] Benedito V A, Visser P B, van Tuyl J M, et al. Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis. Journal of Experimental Botany, 2004, 55(401): 1391-1399.
[23] Kitahara K, Hibino Y, Aida R, et al. Ectopic expression of the rose AGAMOUS-like MADS-box genes 'MASAKO C1 and D1' causes similar homeotic transformation of sepal and petal in Arabidopsis and sepal in Torenia. Plant Science, 2004, 166(5): 1245-1252.
[24] Kyozuka J, Shimamoto K. Ectopic expression of OsMADS3, arice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant and Cell Physiology, 2002, 43(1): 130-135.
[25] Wang Zhengke, Gao Jian, Li Lubing, et al. Isolation and characterization of the AGAMOUS homologous gene NTAG in Chinese narcissus (Narcissus tazetta var. chinensis Roem). Forestry Studies in China, 2006, 8(1): 21-26.
[26] Fan Jinhui, Li Wenqing, Dong Xiuchun, et al. Ectopic expression of a hyacinth AGL6 homolog caused earlier flowering and homeotic conversion in Arabidopsis. Science in China Series C: Life Sciences, 2007, 50(5): 676-689.
[27] Lemmetyinen J, Hassinen M, Elo A, et al. Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch. Physiologia Plantarum, 2004, 121(1): 149-162.
[28] Yu Hao, Xu Yifeng, Tan E L, et al. AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(25):16336-16341.
[29] Yoo S K, Lee J S, Ahn J H. Overexpression of AGAMOUS-LIKE 28 (AGL28) promotes flowering by upregulating expression of floral promoters within the autonomous pathway. Biochemistry and Biophysical Research Communications, 2006, 348(3): 929-936.
[30] Bowman J L, Smyth D R, Meyerowitz E M. Genetic interactions among floral homeotic genes of Arabidopsis. Development, 1991b, 112(1): 1-20.
[31] Lagna G, Hemmati-Brivanlou A. Use of dominant negative constructs to modulate gene expression. Current Topics in Developmental Biology, 1998, 36: 75-98.
[32] de Folter S, Immink R G, Kieffer M, et al. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. The Plant Cell, 2005, 17(5): 1424-1433.
[33] 谢灿, 张劲松, 陈受宜. 烟草花发育基因Nfbp6在花粉和胚珠形成过程中的特异表达. 中国科学C辑, 1999, 29(5): 525-528. Xie C, Zhang J S, Chen S Y. Science in China Serices C, 1999, 29(5): 525-528.
[34] Liu Zhongchi, Meyerowitz E M. LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development, 1995, 121(4): 975-991.
[35] Das P, Ito T, Wellmer F, et al. Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA. Development, 2009, 136(10): 1605-1611.
[36] Liu Zongrang, Liu Zhongchi. The second intron of AGAMOUS drives carpel-and stamen-specific expression sufficient to induce complete sterility in Arabidopsis. Plant Cell Reports, 2008, 27(5): 855-863.

[1] Min YAO,Shu-hua ZHU,Fo-sheng LI,Shi-yan ZHANG,Lin TANG. Analysis of Salt Tolerance and Insect Resistance of Transgenic Tobacco Expressing AtCYSa from Arabidopsis[J]. China Biotechnology, 2018, 38(4): 8-16.
[2] Bo-wen CHEN,Hai-long LIU,Yu-fei XIAO,Zi-hai QIN,Ye ZHANG,Xiao-ning ZHANG. Directional Regulation of Lignin Monomer Synthesis in Tobacco by Using COMT Gene and CCoAOMT Gene of Eucalyptus urophylla[J]. China Biotechnology, 2018, 38(3): 24-32.
[3] HAN Lan, JU Lin-fang, NIU Yi-ding, WANG Ying-chun, HASI Agula. Optimization, Synthesis and Transient Expression of Nattokinase Gene in Tobacco (Nicotiana tabacum L.) Leaves[J]. China Biotechnology, 2015, 35(9): 14-20.
[4] HAN Shuang, YANG Zhi-li, CHEN Li-mei. Over Expression of Arabidopsis CAT Improved the Absorption and Tolerance of Gas HCHO in Tobacco[J]. China Biotechnology, 2015, 35(5): 41-48.
[5] LI Cui-ping, PAN Yu, BAI Xiao-ning, CHU Fu-tang, SU Cheng-gang, ZHANG Xing-guo. Construction of Co-expression Vector Containing AtCAO and AtHEMA1 Genes from Arabidopsis and Transformation into Tobacco[J]. China Biotechnology, 2013, 33(4): 54-60.
[6] LIU Lei, SUN Zhen, SONG Zhong-bang, XIAO Su-qin, CHEN Li-mei. Simultaneous Over-expressions of AOD1 and HPS-PSI in Chloroplasts Creates a Novel Photosynthetic CH3OH-assimilation Pathway and Enhances Its Ability to Assimilate CH3OH[J]. China Biotechnology, 2013, 33(12): 69-78.
[7] ZHAO Qing, WANG Gang, JI Jing, JIN Chao. Construction of Plant Expression Vector with Constitutive Activation DREB2A and Its Genetic Transformation to Tobacco[J]. China Biotechnology, 2012, 32(11): 42-48.
[8] ZHAO Qing, WANG Gang, JI Jing, JIN Chao. Construction of Plant Expression Vector with Constitutive Activation DREB2A and Its Genetic Transformation to Tobacco[J]. China Biotechnology, 2012, 32(11): 42-48.
[9] HEI Qian, XU Yuan, GUO Li-rong, HUANG Ji-bing, ZHANG Hui, XIA Tao. Overexpression of A New Evolved Na+/H+ Antiporter Gene AtNHXS1 Improved Salt Tolerance of Tobacco(Nicotiana tabacum L.)[J]. China Biotechnology, 2011, 31(8): 24-28.
[10] LEI Xiu-Ping, CHEN Hua-Jun, LIU Yong, TANG Qi-Hui, CHEN Yu-Bao, LI Wen-Zheng. Expression of the Glycine-ich RNA-binding Protein of Tobacco in E.coli[J]. China Biotechnology, 2010, 30(08): 27-30.
[11] SONG Feng, SUN Min, LUO Ke-Meng. A Simple and Rapid PCR-based Method for Identifying Transgenic Tobacco Plants Carrying a Single Copy of the Integrated Gene[J]. China Biotechnology, 2010, 30(04): 83-88.
[12] HU Li-E, SONG Wei, LIU Xiao-Hui, JIANG Ting, DIAO Ling-Xia. Expression of Bioactive Thymosin α1 Using Marker Free Transgenic Tobacco[J]. China Biotechnology, 2010, 30(03): 1-8.
[13] . Cloning of Taxane 13α-hydroxylase from Taxus cuspidata and its transformation to Nicotiana tobacum[J]. China Biotechnology, 2008, 28(2): 53-58.
[14] . Transgenic tobacco expressing the crocus CsZCD gene showed the production of crocetin[J]. China Biotechnology, 2007, 27(6): 51-55.
[15] . Expression of a kind of curcin induced from Jatropha curcas (curicin 2) in tobacco[J]. China Biotechnology, 2007, 27(4): 94-98.