Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (4): 8-16    DOI: 10.13523/j.cb.20180402
    
Analysis of Salt Tolerance and Insect Resistance of Transgenic Tobacco Expressing AtCYSa from Arabidopsis
Min YAO,Shu-hua ZHU,Fo-sheng LI,Shi-yan ZHANG,Lin TANG()
Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
Download: HTML   PDF(956KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Plant cysteine protease inhibitors play an important role in defense of biotic and abiotic stresses. The expression of the AtCYSa gene in Arabidopsis thaliana can be induced by a variety of stresses, and the over-expression of AtCYSa in Arabidopsis thaliana can enhance the ability to resist abiotic stress like salt, drought and oxidation. In order to further explore the function of AtCYSa and its application in tobacco, the plant expression vector pCAMBIA 1302-AtCYSa was constructed. Four positive transgenic tobacco lines were obtained by PCR and RT-PCR confirmation. Three transgenic tobacco lines were selected for salt stress treatment and insect resistance. In the salt stress treatment, the content of malondialdehyde in 100mmol/L NaCl and 200mmol/L NaCl treatment group was significantly lower than that in wild type. Evans blue staining and cell relative activity results showed that the cell activity of transgenic tobacco was significantly higher than that of wild type. This indicated that the expression of AtCYSa gene could protect the transgenic tobacco under salt stress. Insect activity studies showed that the total weight of the larvae in the experimental group havig a significant decrease, and the larvae mortality was significantly higher than the control. These results indicate that over-expression of the AtCYSa gene in tobacco can enhance the salt tolerance and insect resistance of transgenic tobacco.



Key wordsTransgenic tobacco      AtCYSa      Salt tolerance      Insect resistance     
Received: 02 November 2017      Published: 08 May 2018
ZTFLH:  Q789  
Cite this article:

Min YAO,Shu-hua ZHU,Fo-sheng LI,Shi-yan ZHANG,Lin TANG. Analysis of Salt Tolerance and Insect Resistance of Transgenic Tobacco Expressing AtCYSa from Arabidopsis. China Biotechnology, 2018, 38(4): 8-16.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180402     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I4/8

Fig.1 Cloning of AtCYSa gene from Arabidopsis thaliana
(a) Extraction of total RNA from Arabidopsis thaliana M: DL2000 (b) PCR of AtCYSa gene
Fig.2 The construction and identification of pCAMBIA1302-AtCYSa recombinant vector
(a) Restriction enzyme digestion of AtCYSa gene with restriction enzyme site (b) Restriction enzyme digestion of pCAMBIA1302 1~3: Plasmid; 4~5: Plasmid digestion; 6: Positive control (c) PCR detection of recombinant vector 1: Negative control; 2~4: Bacterial samples; 5: Positive control
Fig.3 Identification of AtCYSa gene in transgenic tobacoo
(a) PCR identification of AtCYSa gene in transgenic tobacoo lines (b) RT-PCR identification of AtCYSa gene
Fig.4 Assays of cystatins activity in AtCYSa transgenic tobacoo lines
Fig.5 The determination of MDA content of wild-type and AtCYSa transgenic tobacco lines under salt stress
Different number shows significant difference at 0.05 level
Fig.6 Evans blue dyeing and cell activity detection of wild-type and AtCYSa transgenic tobacco lines under 200mmol/L NaCl
(a) Evans blue dyeing of wild-type and AtCYSa transgenic tobacco lines under 200mmol/L NaCl Control: Wild type dispose with 200mmol/L NaCl (b) Cell activity detection of wild-type and AtCYSa transgenic tobacco lines under 200mmol/L NaCl, different number shows significant difference at 0.05 level
Fig.7 Insect weight changes after feeding leaf of wild-type and transgenic tobacco lines
第5天
死亡率
第10天
死亡率
第15天
死亡率
WT 0 5% 5%
AtCYSa-2 5% 10% 25%
AtCYSa-4 10% 30% 40%
AtCYSa-6 5% 15% 20%
Table 1 Insect mortality statistics after feeding leaf of wild-type and transgenic tobacco lines
[1]   Turk V, Bode W . The cystatins: Protein inhibitors of cysteine proteinases. FEBS Letters, 1991,285(2):213-219.
doi: 10.1016/0014-5793(91)80804-C pmid: 1855589
[2]   Margis R, Reis E M, Villeret V . Structural and phylogenetic relationships among plant and animal cystatins. Archives of Biochemistry & Biophysics, 1998,359(1):24-30.
doi: 10.1006/abbi.1998.0875 pmid: 9799556
[3]   Abe K, Emori Y, Kondo H , et al. Molecular cloning of a cysteine proteinase inhibitor of rice (oryzacystatin). Homology with animal cystatins and transient expression in the ripening process of rice seeds. Journal of Biological Chemistry, 1987,262(35):16793-16797.
pmid: 3500172
[4]   Belenghi B, Acconcia F, Trovato M , et al. AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. European Journal of Biochemistry, 2003,270(12):2593-2604.
doi: 10.1046/j.1432-1033.2003.03630.x pmid: 12787025
[5]   Neuteboom L W, Matsumoto K O, Christopher D A . An extended AE-rich N-terminal trunk in secreted pineapple cystatin enhances inhibition of fruit bromelain and is posttranslationally removed during ripening. Plant Physiology, 2009,151(151):515-527.
doi: 10.1104/pp.109.142232
[6]   Hong J K, Hwang J E, Chan J L , et al. Over-expression of Chinese cabbage phytocystatin 1 retards seed germination in Arabidopsis. Plant Science, 2007,172(3):556-563.
doi: 10.1016/j.plantsci.2006.11.005
[7]   Hwang J E, Hong J K, Je J H , et al. Regulation of seed germination and seedling growth by an Arabidopsis phytocystatin isoform, AtCYS6. Plant Cell Reports, 2009,28(11):1623-1632.
doi: 10.1007/s00299-009-0762-7 pmid: 19690865
[8]   Benchabane M, Schlüter U, Vorster J , et al. Plant cystatins. Biochimie, 2010,92(11):1657-1666.
doi: 10.1016/j.biochi.2010.06.006
[9]   Martinez M, Santamaria M E, Diazmendoza M , et al. Phytocystatins: defense proteins against phytophagous insects and acari. International Journal of Molecular Sciences, 2016,17(10):1747.
doi: 10.3390/ijms17101747 pmid: 5085774
[10]   Massonneau A, Condamine P, Wisniewski J P , et al. Maize cystatins respond to developmental cues, cold stress and drought. Biochimica Et Biophysica Acta, 2005,1729(3):186-199.
doi: 10.1016/j.bbaexp.2005.05.004 pmid: 15979170
[11]   Quain M D, Makgopa M E, Márquez-García B , et al. Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits. Plant Biotechnology Journal, 2014,12(7):903-913.
doi: 10.1111/pbi.12193 pmid: 24754628
[12]   Ninkovi S, Milju?-Duki J, Radovi S , et al. Phytodecta fornicata, Brüggemann resistance mediated by oryzacystatin II proteinase inhibitor transgene. Plant Cell, Tissue and Organ Culture (PCTOC), 2007,91(3):289-294.
doi: 10.1007/s11240-007-9296-2
[13]   Haq S K, Atif S M, Khan R H . Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Archives of Biochemistry & Biophysics, 2004,431(1):145-159.
doi: 10.1016/j.abb.2004.07.022 pmid: 15464737
[14]   Goulet M C, Michaud D . Tailoring the specificity of a plant cystatin toward herbivorous insect digestive cysteine proteases by single mutations at positively selected amino acid sites. Plant Physiology, 2008,146(3):1010-1019.
doi: 10.1104/pp.108.115741
[15]   Martínez M, Abraham Z, Carbonero P , et al. Comparative phylogenetic analysis of cystatin gene families from arabidopsis, rice and barley. Molecular Genetics and Genomics, 2005,273(5):423-432.
doi: 10.1007/s00438-005-1147-4 pmid: 15887031
[16]   Belenghi B, Acconcia F, Trovato M , et al. AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. European Journal of Biochemistry, 2003,270(12):2593-2604.
doi: 10.1046/j.1432-1033.2003.03630.x pmid: 12787025
[17]   Zhang X, Liu S, Takano T . Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Molecular Biology, 2008,68(1):131-143.
doi: 10.1007/s11103-008-9357-x pmid: 18523728
[18]   Hwang J E, Hong J K, Chan J L , et al. Distinct expression patterns of two Arabidopsis phytocystatin genes, AtCYS1 and AtCYS2, during development and abiotic stresses. Plant Cell Reports, 2010,29(8):905-915.
doi: 10.1007/s00299-010-0876-y
[19]   Labudda M, Róańska E, Szewińska J , et al. Protease activity and phytocystatin expression in Arabidopsis thaliana upon Heterodera schachtii infection. Plant Physiology & Biochemistry, 2016,109:416-429.
[20]   Song C, Kim T, Chung W S , et al. The Arabidopsis phytocystatin AtCYS5 enhances seed germination and seedling growth under heat stress conditions. Molecules and Cells, 2017,40(8):577-586.
doi: 10.14348/molcells.2017.0075 pmid: 28756655
[21]   Je J, Song C, Hwang J E , et al. DREB2C acts as a transcriptional activator of the thermo tolerance-related phytocystatin 4 (AtCYS4) gene. Transgenic Research, 2014,23(1):109-123.
doi: 10.1007/s11248-013-9735-2 pmid: 23868510
[22]   杜开书, 柴立英 . 黄粉虫饲养条件的研究现状与利用前景. 安徽农业科学, 2006,34(18):4646-4647.
doi: 10.3969/j.issn.0517-6611.2006.18.066
[22]   Du K S, Chai L Y . Study on condition of Tenebrio molitor L. rearing and its application prospect. Journal of Anhui Sci, 2006,34(18):4646-4647.
doi: 10.3969/j.issn.0517-6611.2006.18.066
[23]   韦玉梅, 李佳素, 周杰 , 等. 烟草叶片蛋白3种提取方法的比较研究. 湖北农业科学, 2011,50(23):4968-4970.
doi: 10.3969/j.issn.0439-8114.2011.23.064
[23]   Wei Y M, Li J S, Zhou J , et al. Comparison study on three methods for tobacco leaf protein extraction. Hubei Agricultural Sciences, 2011,50(23):4968-4970.
doi: 10.3969/j.issn.0439-8114.2011.23.064
[24]   张志良, 瞿伟菁, 李小方 . 植物生理学实验指导. 第二版. 高等教育出版社, 1990.
[24]   Zhang Z L, Qu W J, Li X F. Plant physiology experiment guidance. 2nd ed.Higher Education Press, 1990.
[25]   刘楠, 林植芳 . 用伊文思蓝染色法检测植物整体叶片的细胞活性. 植物生理学报, 2011,47(6):570-574.
[25]   Liu N, Lin Z F . Use of evans blue for testing cell viability of intact leaves of plant. Plant Physiology Journal, 2011,47(6):570-574.
[26]   Li R, Wang W J, Wang W G , et al. Overexpression of a cysteine proteinase inhibitor gene from Jatropha curcas confers enhanced tolerance to salinity stress. Electronic Journal of Biotechnology, 2015,18(5):368-375.
doi: 10.1016/j.ejbt.2015.08.002
[27]   Solomon M, Belenghi B, Delledonne M , et al. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. The Plant Cell, 1999,11(3):431-443.
doi: 10.1105/tpc.11.3.431 pmid: 10072402
[28]   高宝嘉, 李川, 刘军侠 . 转抗虫基因林木在害虫控制中的作用与合理利用途径. 河北农业大学学报, 2003,26(4):25-28.
doi: 10.3969/j.issn.1000-1573.2003.04.007
[28]   Gao B J, Li C, Liu J X . The effect of transgenic insect-resistant forst plant on the insect pest control and its approach of reasonable utilization. Journal of Agricultural University of Hebei, 2003,26(4):25-28.
doi: 10.3969/j.issn.1000-1573.2003.04.007
[29]   Shah D M , Rommens C M T, Beachy R N. Resistance to diseases and insects in transgenic plants: progress and applications to agriculture. Trends in Biotechnology, 1995,13(9):362-368.
doi: 10.1016/S0167-7799(00)88982-9
[30]   谢先芝, 黄美娟, 吴乃虎 . 转番茄蛋白酶抑制剂Ⅱ基因烟草植株的培育及其抗虫特性分析. 自然科学进展, 2002,12(2):145-150.
doi: 10.3321/j.issn:1002-008X.2002.02.006
[30]   Xie X Z, Huang M J, Wu N H . Cultivation and insect-resistant characteristics analysis of transgenic tomato trotease inhibitors Ⅱ gene in tobacco plants. Prog Nat Sci, 2002,12(2):145-150.
doi: 10.3321/j.issn:1002-008X.2002.02.006
[31]   Koiwa H, Shade R E, Zhu-Salzman K , et al. A plant defensive cystatin (soyacystatin) targets cathepsin L-like digestivecysteine proteinases (DvCALs) in the larval midgut of western cornrootworm (Diabrotica virgifera virgifera). FEBS Letters, 2000,471(1):67-70.
doi: 10.1016/S0014-5793(00)01368-5
[1] GAO Hong-jiang, LI Sheng-yan, WANG Hai, LIN Feng, ZHANG Chun-yu, LANG Zhi-hong. Progress on Function and Biosynthesis of Benzoxazinoids[J]. China Biotechnology, 2017, 37(8): 104-109.
[2] SHI Li-ping, JI Jing, WANG Gang, JIN Chao, XIE Chao, DU Xi-long, GUAN Chung-feng, ZHANG Lie, LI Chen. The Expression and Analysis of Terpene Synthesis Related Genes in Maize under the Condition of Salt Stress[J]. China Biotechnology, 2016, 36(8): 31-37.
[3] HAN Shuang, YANG Zhi-li, CHEN Li-mei. Over Expression of Arabidopsis CAT Improved the Absorption and Tolerance of Gas HCHO in Tobacco[J]. China Biotechnology, 2015, 35(5): 41-48.
[4] LIU Lei, SUN Zhen, SONG Zhong-bang, XIAO Su-qin, CHEN Li-mei. Simultaneous Over-expressions of AOD1 and HPS-PSI in Chloroplasts Creates a Novel Photosynthetic CH3OH-assimilation Pathway and Enhances Its Ability to Assimilate CH3OH[J]. China Biotechnology, 2013, 33(12): 69-78.
[5] ZHAO Qing, WANG Gang, JI Jing, JIN Chao. Construction of Plant Expression Vector with Constitutive Activation DREB2A and Its Genetic Transformation to Tobacco[J]. China Biotechnology, 2012, 32(11): 42-48.
[6] ZHAO Qing, WANG Gang, JI Jing, JIN Chao. Construction of Plant Expression Vector with Constitutive Activation DREB2A and Its Genetic Transformation to Tobacco[J]. China Biotechnology, 2012, 32(11): 42-48.
[7] HEI Qian, XU Yuan, GUO Li-rong, HUANG Ji-bing, ZHANG Hui, XIA Tao. Overexpression of A New Evolved Na+/H+ Antiporter Gene AtNHXS1 Improved Salt Tolerance of Tobacco(Nicotiana tabacum L.)[J]. China Biotechnology, 2011, 31(8): 24-28.
[8] SONG Feng, SUN Min, LUO Ke-Meng. A Simple and Rapid PCR-based Method for Identifying Transgenic Tobacco Plants Carrying a Single Copy of the Integrated Gene[J]. China Biotechnology, 2010, 30(04): 83-88.
[9] HU Li-E, SONG Wei, LIU Xiao-Hui, JIANG Ting, DIAO Ling-Xia. Expression of Bioactive Thymosin α1 Using Marker Free Transgenic Tobacco[J]. China Biotechnology, 2010, 30(03): 1-8.
[10] . Transgenic tobacco expressing the crocus CsZCD gene showed the production of crocetin[J]. China Biotechnology, 2007, 27(6): 51-55.
[11] . Expression of a kind of curcin induced from Jatropha curcas (curicin 2) in tobacco[J]. China Biotechnology, 2007, 27(4): 94-98.