Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (10): 39-43    DOI:
    
Succinate Production from Escherichia coli Mutant QQS101 Fermentation
LI Yi-kui1,2, KANG Jun-hua1, KANG Zhen1, GENG Yan-ping1, WANG Yi-hua2, QI Qing-sheng1
1. State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China;
2. Science Department, Jiangxi Agricultural University, Nanchang 330045, China
Download: HTML   PDF(610KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Succinate is an important bio-based platform molecule. In the present work, the growth and glucose metabolism of Escherichia coli mutant QQS101 with the deficiency of formate transporter A (focA), formate-pyruvate lyase (pflB) and lactate dehydrogenase (ldhA) under strict anaerobic condition were investigated. The degree of reduction per carbon of glucose and the products of E. coli mix-acids fermentation were compared, and then recognized that non-strict anaerobic condition favored QQS101 producing succinate from glucose. Furthermore, effects of the carbon sources for aerobic growth on fermentation were performed. Results showed that QQS101 could accumulate succinate with a concentration of 31.01 g/L with a yield of 1.258 mol Succinate/mol Glucose, when growing on xylose as the aerobic substrate. During the fermentation, addition of alanine could enhance the molar yield of succinate to glucose utilized.



Key wordsEscherichia coli      Succinate      Xylose      Alanine     
Received: 23 March 2010      Published: 25 October 2010
ZTFLH:  TQ920.1  
Corresponding Authors: QI Qing-sheng     E-mail: qiqingsheng@sdu.edu.cn
Cite this article:

LI Yi-kui, KANG Jun-hua, KANG Zhen, GENG Yan-ping, WANG Yi-hua, QI Qing-sheng. Succinate Production from Escherichia coli Mutant QQS101 Fermentation. China Biotechnology, 2010, 30(10): 39-43.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I10/39


[1] Hong S H, Lee S Y. Importance of redox balance on the production of succinic acid by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol, 2002, 58(3): 286-290.

[2] Akesson M, Karlsson E N, Hagander P, et al. On-line detection of acetate formation in Escherichia coli culture using dissolved oxygen responses to feed transients. Biotechnol Bioeng, 1999, 64(5): 590-598.

[3] 康振, 耿艳萍, 张园园, 等. 好氧发酵生产琥珀酸工程菌株的构建. 生物工程学报, 2008, 24(12): 2081-2085. Kang Z, Geng Y P, Zhang Y Y, et al. Construction of engineered Escherichia coli for aerobic succinate production. Chin J Biotech, 2008, 24(12): 2081-2085.

[4] McKinlay J B, Vieille C, Zeikus J G. Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol, 2007, 76(4): 727-740.

[5] Lin H, Bennett G N, San K Y. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab Eng, 2005, 7(2): 116-127.

[6] Sanchez A M, Bennett G N, San K Y. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng, 2005, 7(3): 229-239.

[7] Chatterjee R, Millard C S, Champion K, et al. Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol, 2001, 67(1): 148-154.

[8] Hong S H, Lee S Y. Metabolic flux analysis for succinic acid production by recombinant Escherichia coli with amplified malic enzyme activity. Biotechnol Bioeng, 2001, 74(2): 89-95.

[9] Sanchez A M, Bennett G N, San K Y. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnol Prog, 2005, 21(2): 358-365.

[10] Stols L, Donnelly M I. Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant. Appl Environ Microbiol, 1997, 63(7): 2695-2701.

[11] Mat-Jan F, Alam K Y, Clark D P. Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase. J Bacteriol, 1989, 171(1): 342-348.

[12] Singh A, Lynch M D, Gill R T. Genes restoring redox balance in fermentation-deficient E. coli NZN111. Metab Eng, 2009, 11(6): 347-354.

[13] Wu H, Li Z M, Zhou L, et al. Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture. Appl Environ Microbiol, 2007, 73(24): 7837-7843.

[14] Lara A R, Caspeta L, Gosset G, et al. Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: an alternative to fed-batch cultures. Biotechnol Bioeng, 2008, 99(4): 893-901.

[15] Becker S, Vlad D, Schuster S, et al. Regulatory O2 tensions for the synthesis of fermentation products in Escherichia coli and relation to aerobic respiration. Arch Microbiology, 1997, 168(4): 290-296.

[16] Nielsen J, Villadsen J, Liden G. Bioreaction Engineering Principles. 2nd ed. New York: Kluwer Academic/Plenum Publishers, 2003.60-73.

[17] Latour D J, Weiner J H. Regulation of in vitro expression of the Escherichia coli frd operon: alanine and Fnr represent positive and negative control elements. Nucleic Acids Research, 1988, 16(14): 6339-6352.

[1] Jun HUANG,Ren-zhi WU,Qi LU,Zhi-long LU. Research Progress on Xylose Transporters of Saccharomyces cerevisiae[J]. China Biotechnology, 2018, 38(2): 109-115.
[2] MA Ze-lin, LIU Jia-heng, HUANG Xu, CAIYIN Qing-gele, ZHU Hong-ji. Research Progress on Utilization of Lignocellulosic Biomass by Microorganisms[J]. China Biotechnology, 2017, 37(6): 124-133.
[3] CHEN Zhen, CHEN Xian-zhong, ZHANG Li-hua, WANG Jun-hua, SHEN Wei, FAN You. Metabolic Engineering of Candida tropicalis for Xyltiol Production from Xylose Mother Liquor[J]. China Biotechnology, 2017, 37(5): 66-75.
[4] HU Li-qiang, ZHENG Wen, ZHONG Yi, DU Dan, YANG Hao, GONG Meng. Comparison of Expression and Activity of Antiviral Protein RC28 in Escherichia coli and Pichia pastoris[J]. China Biotechnology, 2017, 37(1): 14-20.
[5] WU Xue-long, YANG Xiao-hui, WANG Jun-qing, WANG Rui-ming. Expression and Characteristics of Apis mellifera NADPH-cytochrome P450 Reductase Gene in Escherichia coli[J]. China Biotechnology, 2016, 36(12): 28-35.
[6] LIU Bao-li, LIU Gao-gang, LIN Qiu-hui, LI Bing-zhi, YUAN Ying-jin. Construction of Recombinant Xylose-utilizing Saccharomyces cerevisiae by Three-plasmid Co-transformation Combinatorial Screening Method[J]. China Biotechnology, 2016, 36(12): 86-97.
[7] FANG Li xia, CAO Ying xiu, SONG Hao. Engineering Escherichia coli to Synthesize Free Fatty Acids: A Recent Progress[J]. China Biotechnology, 2016, 36(11): 90-97.
[8] ZHANG Qiang, LI Da shuai, LU Wen yu. Progress and Prospect of Heterologous Biosynthesis of Ttriterpenoids in Engineered Escherichia coli[J]. China Biotechnology, 2016, 36(11): 83-89.
[9] XIONG Yuan-yuan, LU Chuan-dong, TAO Ye, ZHAO Jin-fang. Fermentative Production of L-lactic Acid from Wastepaper by Recombinant Escherichia coli WL204[J]. China Biotechnology, 2015, 35(5): 49-54.
[10] GUO Zhao-lai, BAI Xue-gui, YAN Jin-ping, CHEN Xuan-qin, LI Kun-zhi, XU Hui-ni. Prokaryotic Expression and Function Analysis of SoHb from Spinach[J]. China Biotechnology, 2015, 35(4): 54-59.
[11] QIAN Xin, GUO Hong-yan, ZHOU Qing-feng. Construction of 4-Hydroxyphenylacetate-3-hydroxylase A Expression Strain and Its Biotransformation Effect on Hydroxytyrosol[J]. China Biotechnology, 2015, 35(3): 56-60.
[12] FENG Qi, WANG Ying. Optimization and Application of SLiCE in vitro Assembly Method[J]. China Biotechnology, 2015, 35(10): 59-65.
[13] LIU Wei, ZHENG Pu, JIN Xin-na. Effects of Disrupting Acetate Formation Pathways in Corynebacterium acetoacidophilum on Succinate Production Under Oxygen Deprivation[J]. China Biotechnology, 2014, 34(9): 48-55.
[14] WANG Jian-feng, ZHANG Si-liang, WANG Yong. Pathway Assembly and Optimization in E. coli for de Novo Biosynthesis of Resveratrol[J]. China Biotechnology, 2014, 34(2): 71-77.
[15] LU Hong-ying, HE Hu, LIU Zao, WANG Yong-ze, WANG Jin-hua. Engineering of an Escherichia coli Strain LHY02 for Production of Optically Pure D-lactic Acid from Xylose[J]. China Biotechnology, 2014, 34(12): 91-96.