Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (5): 66-75    DOI: 10.13523/j.cb.20170509
    
Metabolic Engineering of Candida tropicalis for Xyltiol Production from Xylose Mother Liquor
CHEN Zhen1,2, CHEN Xian-zhong1,2, ZHANG Li-hua1,2, WANG Jun-hua3, SHEN Wei1,2, FAN You1,2
1. Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China;
2. Center of Bioresource & Bioenergy, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
3. National Engineering Laboratory for Creal Fermention Technology, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(1379KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As one of polyol, xylitol has been extensively used in the food, pharmaceutical and other light industries. Presently, xylitol is produced by the reduction of D-xylose derived from hemicellulosic hydrolysate in the presence of Raney nickel catalysts. In the process of extracting xylose, a large amount of xylose mother liquor as by-product will be generated. Xylose mother liquor contains in a certain concentration of glucose, xylose, arabinose and other carbon sources, and a small amount of furfural, tetrahydrofuran and other substances. Production of biochemical from xylose mother liquor via microbial transformation can improve economic value of xylose mother liquor and reduce the environmental pollution. Candida tropicalis can not only use glucose, but also has a highly efficient xylose metabolic pathway. Two allelic genes of xylitol dehydrogenase gene from C. tropicalis was deleted by genetic technique, and the resulting mutant strain was obtained, which can not use xylitol as carbon source. The fermentation performance of the mutant in xylose mother liquor medium was evaluated. The fermentation conditions of xylitol fermentation process was optimized. The optimal fermentation conditions were as follows:300g/L xylose mother liquor, 5g/L corn steep liquor, fermentation temperature 35℃, initial pH 5.0, inoculate volume 15%, under 200r/min for 140h. Using the optimized fermentation process, xylitol yield reached 83.01g/L.



Key wordsCandida tropicalis      Fermentation      Xylose mother liquor      Gene deletion      Xylitol     
Received: 11 November 2016      Published: 25 May 2017
ZTFLH:  Q815  
Cite this article:

CHEN Zhen, CHEN Xian-zhong, ZHANG Li-hua, WANG Jun-hua, SHEN Wei, FAN You. Metabolic Engineering of Candida tropicalis for Xyltiol Production from Xylose Mother Liquor. China Biotechnology, 2017, 37(5): 66-75.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170509     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I5/66

[1] 冯永强, 王江星. 木糖醇的特性及在食品中的应用. 食品科学, 2004, 25(11):379-381. Feng Y Q, Wang J X. Property of xylitol and its application in food industry.Food Science, 2004, 25(11):379-381.
[2] Islam M S. Effects of xylitol as a sugar substitute on diabetes-related parameters in nondiabetic rats. J Med Food, 2011,14(5):505-511.
[3] 尤新. 木糖醇及其功能. 食品工业科技, 2003, 24(8):87-88. You X. Xylitol and its function.Science and Technology of Food Industry, 2003, 24(8):87-88.
[4] 张厚瑞, 何成新, 梁小燕, 等. 半纤维素水解物生物转化生产木糖醇.生物工程学报, 2000, 16(3):304-307. Zhang R H, He C X, Liang X Y, et al. Production of xylitol by biotransformation of hemicellulose hydrolyzate. Chinese Journal of Biotechnology, 2000, 16(3):304-307.
[5] de Albuquerque T L, da Silva I J, de Macedo G R, et al. Biotechnological production of xylitol from lignocellulosic wastes:a review. Process Biochem, 2014, 49(11):1779-1789.
[6] Jeon W Y, Yoon B H, Ko B S, et al. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioproc Biosyst Eng, 2012, 35(1-2):191-198.
[7] Ahmad I, Shim W Y, Jeon W Y, et al. Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Bioproc Biosyst. Eng, 2012, 35(1-2):199-204.
[8] Ahmad I, Shim W Y, Kim J H. Enhancement of xylitol production in glycerol kinase disrupted Candida tropicalis by co-expression of three genes involved in glycerol metabolic pathway. Bioproc Biosyst Eng, 2013, 36(9):1279-1284.
[9] Wang H, Li L, Zhang L, et al. Xylitol production from waste xylose mother liquor containing miscellaneous sugars and inhibitors:one-pot biotransformation by Candida tropicalis and recombinant Bacillus subtilis. Microb Cell Fact, 2016, 15(1):1.
[10] Wang H, Pan J, Wang J, et al. Succinic acid production from xylose mother liquor by recombinant Escherichia coli strain. Biotechnol Biotechnol Equip, 2014, 28(6):1042-1049.
[11] Cheng H, Wang H, Lv J, et al. A novel method to prepare L-Arabinose from xylose mother liquor by yeast-mediated biopurification. Microb Cell Fact, 2011, 10(1):1-8.
[12] 汪东升, 张翠英, 彭晓培, 等. 木糖母液发酵生产2, 3-丁二醇的研究. 食品研究与开发, 2012, 33(7):132-135. Wang D S, Zhang C Y, Peng X P, et al. 2,3-butanediol production using xylose mother liquor. Food Research and Development, 2012, 33(7):132-135.
[13] 项峥, 陈献忠, 张利华, 等. 利用可重复使用的URA3标记基因建立热带假丝酵母基因敲除系统.遗传, 2014, 36(10):1053-1061. Xiang Z, Chen X Z, Zhang L H, et al.Development of a genetic transformation system for Candida tropicalis based on a reusable selection marker of URA3 gene. Hereditas, 2014, 36(10):1053-1061.
[14] Zhang L, Chen X, Chen Z, et al. Development of an efficient genetic manipulation strategy for sequential gene disruption and expression of different heterologous GFP genes in Candida tropicalis. Appl Microbiol Biot, 2016, 100(22):9567-9580.
[15] 方祥年. 玉米芯半纤维素水解液发酵生产木糖醇的关键技术研究.杭州:浙江大学,化学工程与生物工程学系, 2011. Fang N X. Study on the Key Technique of Xylitol Fermentation from Corn Cob Hemicellulosic Hydrolysate. Hangzhou:Zhejiang University, Department of Chemical Engineering and Bioengineering, 2011.
[16] Wang H, Pan J, Wang J, et al. Succinic acid production from xylose mother liquor by recombinant Escherichia coli strain. Biotechnoi Biotec Eq, 2014, 28(6):1042-1049.
[17] 曾琦锴,林影,陈璐菲,等.热带假丝酵母木糖还原酶的酶学性质研究.食品与发酵工业, 2006, 32(7):16-18. Zeng Q K, Lin Y, Chen L F, et al. The characterizations of xylose reductase in Candida tropicalis.Food and Fermentation Industries, 2006, 32(7):16-18.
[18] 方祥年,黄炜,夏黎明.假丝酵母发酵玉米芯半纤维素水解液生产木糖醇.生物工程学报, 2004, 20(2):295-299. Fang N X, Huang W, Xia L M. Xylitol production from corn cob hemicellulosic hydrolysate by Candida sp..Chinese Journal of Biotechnology, 2004, 20(2):295-299.

[1] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[2] PENG Hai-li,HOU Zhan-ming. MGV1 Dependent Transcripts(MDT1)Gene in Fusarium Graminearum is Involved in Conidiation and Vegetative Growth[J]. China Biotechnology, 2020, 40(8): 10-18.
[3] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[4] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[5] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[6] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[7] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[8] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[9] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[10] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[11] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.
[12] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.
[13] Ya-chao FAN,Lin ZHANG,Xiao-shu LI,Peng-xiang WANG,Xin-wu YAO,Kai QIAO. Study on the Fermentation of 2,3-Butanediol by Klebsiella pneumoniae CICC10011[J]. China Biotechnology, 2018, 38(2): 68-74.
[14] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[15] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.