Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (11): 55-63    DOI: 10.13523/j.cb.2107034
技术与方法     
基于光谱法-图像灰度法高通量筛选高效固定CO2的苯甲酸脱羧酶*
范雁1,2,杨淼1,薛松3,**()
1 中国科学院大连化学物理研究所 大连 116023
2 中国科学院大学 北京 100049
3 大连理工大学生物工程学院 大连 116022
High-throughput Screening of Benzoate Decarboxylase for High-efficiency Fixation of CO2 Based on Spectroscopy-image Grayscale Method
FAN Yan1,2,YANG Miao1,XUE Song3,**()
1 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Bioengineering, Dalian University of Technology, Dalian 116024, China
 全文: PDF(1330 KB)   HTML
摘要:

目的:苯甲酸脱羧酶能够催化羧化反应固定CO2,为了获得高效的苯甲酸脱羧酶,需要利用高通量分子克隆与突变体筛选系统对产生的大量突变体进行筛选,因此建立、开发高效的筛选评价方法对于获得高羧化效率的突变体至关重要。方法:利用2,3-二羟基苯甲酸脱羧酶催化邻苯二酚固定CO2的反应体系,建立了光谱法-图像灰度法高通量筛选和评价固定CO2的苯甲酸脱羧酶突变体。利用分光光度法在308 nm快速定量羧化产物2,3-二羟基苯甲酸。同时利用高效液相色谱(HPLC)法对分光光度法的测定结果进行了校正,确定了分光光度法估算的2,3-二羟基苯甲酸浓度与HPLC方法测定的准确浓度之间具有良好的线性关系(R2 = 0.996)。利用HPLC-分光光度法的相关性可以获得实际样品中准确的2,3-二羟基苯甲酸浓度。利用Image J软件获得蛋白质标准品和突变体的灰度均值,根据灰度法定量蛋白质标准品的标准曲线计算突变体的蛋白质表达量。利用单位酶量催化邻苯二酚获得2,3-二羟基苯甲酸的浓度比较突变体的催化活性。结果:纯酶和粗酶体系下HPLC法测定的2,3-二羟基苯甲酸浓度与分光光度法测定的吸光度值的关系分别为C1=0.500A1-0.010(R2 = 0.996)和C2=1.458A2+0.431 9(R2 = 0.991)。从13个突变体中获得了两个正向突变体,羧化活性分别是WT的3.5倍和1.7倍。结论:基于光谱法-图像灰度法可以实现高通量筛选固定CO2的苯甲酸脱羧酶,该方法可用于具有相似功能的苯甲酸脱羧酶对其他取代基的酚类和水杨酸类似物的底物选择性筛选。

关键词: 光谱法-图像灰度法CO2固定23-二羟基苯甲酸高通量筛选苯甲酸脱羧酶    
Abstract:

Objective: Benzoic acid decarboxylase can catalyze the carboxylation reaction to fix CO2. In order to obtain a benzoate decarboxylase that can efficiently fix CO2, it is required to screen a large number of mutants based on the high-throughput molecular cloning and mutant screening systems. Thus, it is essential to develop an efficient screening-evaluation method for obtaining mutants with high-efficiency of carboxylation. Methods: 2,3-dihydroxybenzoic acid decarboxylase catalyzes catechol with CO2 to produce 2,3-dihydroxybenzoic acid. A spectrometry-image grayscale method was established to high-throughput screen and evaluate the activities of mutants. The concentration of 2,3-dihydroxybenzoic acid was quickly quantified by spectrophotometry at 308 nm. Further, the spectrophotometric results were corrected using the high performance liquid chromatography (HPLC) method. The 2,3-dihydroxybenzoic acid concentration by the spectroscopy method was linearly correlated with the accurate concentration determined by the HPLC method (R2 = 0.996). The 2,3-dihydroxybenzoic acid concentration of the actual sample was determined by the correlation of HPLC-spectrometry. The grayscale average of protein standards and mutants were obtained by Image J software. The protein expression level of mutants was calculated by the standard curve using the grayscale method. The enzyme activities of mutants were compared based on the 2,3-dihydroxybenzoic acid concentration. Results: The 2,3-dihydroxybenzoic acid concentration was quantified by the absorbance value using linear equation C1=0.500A1-0.010 (R 2=0.996, purified enzyme) and C2=1.458A2+0.431 9 (R 2 =0.991, crude enzyme). Two mutants were screened out from 13 mutants, which carboxylation activities were 3.5-fold and 1.7-fold of WT, respectively. Conclusion: The high-throughput screening of benzoate decarboxylase for fixing CO2 can be achieved by the spectroscopy-image grayscale method. This method is suitable for screening of substrate selectivity, i.e. phenols with other substituents and salicylic acid analogs, which is catalyzed by benzoate decarboxylase with similar functions.

Key words: Spectroscopy-image grayscale method    CO2 fixation    2    3-dihydroxybenzoic acid    High-throughput screening    Benzoate decarboxylase
收稿日期: 2021-07-14 出版日期: 2021-12-01
ZTFLH:  Q819  
基金资助: * 国家自然科学基金面上项目(21877110)
通讯作者: 薛松     E-mail: xuesong@dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
范雁
杨淼
薛松

引用本文:

范雁,杨淼,薛松. 基于光谱法-图像灰度法高通量筛选高效固定CO2的苯甲酸脱羧酶*[J]. 中国生物工程杂志, 2021, 41(11): 55-63.

FAN Yan,YANG Miao,XUE Song. High-throughput Screening of Benzoate Decarboxylase for High-efficiency Fixation of CO2 Based on Spectroscopy-image Grayscale Method. China Biotechnology, 2021, 41(11): 55-63.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2107034        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I11/55

图1  全波长扫描
图2  分光光度法测定2,3-DHBA标准曲线的绘制
图3  混合标准品的全波长扫描
图4  羧化反应体系的全波长扫描
图5  分光光度法和HPLC法测定样品2,3-DHBA浓度的关系
样品 样品信息 2,3-DHBA浓度/(mmol/L) 相对偏差/%
酶量 /μg 反应时间/min 分光光度法计算值a HPLC法实际测定值b
1 50 10 1.10 ± 0.04 1.07 ± 0.04 2.8
2 50 20 1.30 ± 0.09 1.40 ± 0.05 7.0
3 200 10 1.72 ± 0.02 2.01 ± 0.09 14.2
4 200 15 2.34 ± 0.07 2.70 ± 0.11 13.3
表1  HPLC法和分光光度法测定不同样品中2,3-DHBA浓度的结果对比
图6  粗酶体系下分光光度法和HPLC法测定2,3-DHBA浓度的关系
图7  SDS-PAGE图
图8  2,3-DHBD_Ao蛋白标准品灰度均值的标准曲线
图9  不同取代基的酚和水杨酸类似物的全波长扫描
样品
名称
2,3-DHBA浓度
/(mmol/L)
灰度
均值
蛋白质含量
/g
酶活/[mmol/
(L·g)]
WT 3.21 34 752 0.36 8.94
I38L 1.98 12 809 0.06 31.51
D293S 1.74 70 070 0.84 2.09
A63W 1.77 49 343 0.56 3.19
A63E 1.82 43 383 0.48 3.83
F296N 2.10 75 395 0.91 2.31
A63I 1.80 16 765 0.12 15.47
A63T 1.88 60 292 0.70 2.67
F296P - 11 953 0.05 -
A63Q - 9 768 0.02 -
A63L 1.83 23 458 0.21 8.88
D293E 1.86 25 079 0.23 8.12
A63F 1.92 38 592 0.41 4.68
F296K 2.19 63 227 0.74 2.95
表2  高通量筛选突变体的酶活测定结果
[1] Kourist R, Guterl J K, Miyamoto K, et al. Enzymatic decarboxylation-an emerging reaction for chemicals production from renewable resources. ChemCatChem, 2014, 6(3):689-701.
doi: 10.1002/cctc.201300881
[2] Schada von Borzyskowski L, Rosenthal R G, Erb T J. Evolutionary history and biotechnological future of carboxylases. Journal of Biotechnology, 2013, 168(3):243-251.
doi: 10.1016/j.jbiotec.2013.05.007 pmid: 23702164
[3] Aleku G A, Roberts G W, Titchiner G R, et al. Synthetic enzyme-catalyzed CO2 fixation reactions. ChemSusChem, 2021, 14(8):1781-1804.
doi: 10.1002/cssc.v14.8
[4] Pesci L, Glueck S M, Gurikov P, et al. Biocatalytic carboxylation of phenol derivatives: kinetics and thermodynamics of the biological Kolbe-Schmitt synthesis. FEBS Journal, 2015, 282(7):1334-1345.
doi: 10.1111/febs.2015.282.issue-7
[5] Payer S E, Faber K, Glueck S M. Non-oxidative enzymatic (de)carboxylation of (hetero)aromatics and acrylic acid derivatives. Advanced Synthesis & Catalysis, 2019, 361(11):2402-2420.
[6] Wuensch C, Gross J, Steinkellner G, et al. Regioselective ortho-carboxylation of phenols catalyzed by benzoic acid decarboxylases: a biocatalytic equivalent to the Kolbe-Schmitt reaction. RSC Advances, 2014, 4(19):9673.
doi: 10.1039/c3ra47719c
[7] Wuensch C, Glueck S M, Gross J, et al. Regioselective enzymatic carboxylation of phenols and hydroxystyrene derivatives. Organic Letters, 2012, 14(8):1974-1977.
doi: 10.1021/ol300385k
[8] Santha R, Rao N A, Vaidyanathan C S. Identification of the active-site peptide of 2, 3-dihydroxybenzoic acid decarboxylase from Aspergillus oryzae. Biochimica et Biophysica Acta, 1996, 1293(2):191-200.
pmid: 8620029
[9] Plasch K, Hofer G, Keller W, et al. Pressurized CO2 as a carboxylating agent for the biocatalytic ortho-carboxylation of resorcinol. Green Chemistry, 2018, 20(8):1754-1759.
doi: 10.1039/C8GC00008E
[10] Fan Y, Feng J Q, Yang M, et al. CO2(aq) concentration-dependent CO2 fixation via carboxylation by decarboxylase. Green Chemistry, 2021, 23(12):4403-4409.
doi: 10.1039/D1GC00825K
[11] Cobb R E, Chao R, Zhao H M. Directed evolution: past, present, and future. AIChE Journal, 2013, 59(5):1432-1440.
doi: 10.1002/aic.13995
[12] Zhang X M, Ren J, Yao P Y, et al. Biochemical characterization and substrate profiling of a reversible 2, 3-dihydroxybenzoic acid decarboxylase for biocatalytic Kolbe-Schmitt reaction. Enzyme and Microbial Technology, 2018, 113:37-43.
doi: 10.1016/j.enzmictec.2018.02.008
[13] Schneider C A, Rasband W S, Eliceiri K W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 2012, 9(7):671-675.
pmid: 22930834
[14] Schindelin J, Rueden C T, Hiner M C, et al. The ImageJ ecosystem: an open platform for biomedical image analysis. Molecular Reproduction and Development, 2015, 82(7-8):518-529.
doi: 10.1002/mrd.22489 pmid: 26153368
[15] Magdziak D, Rodriguez A A, van de Water R W, et al. Regioselective oxidation of phenols to o-quinones with o-iodoxybenzoic acid (IBX). Organic Letters, 2002, 4(2):285-288.
pmid: 11796071
[16] Tommasi I C. Carboxylation of hydroxyaromatic compounds with HCO3- by enzyme catalysis: recent advances open the perspective for valorization of lignin-derived aromatics. Catalysts, 2019, 9(1):37.
doi: 10.3390/catal9010037
[1] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[2] 赵霞,朱哲,祖尧. 斑马鱼tbx2b调控心脏房室间隔发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(8): 1-7.
[3] 陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.
[4] 欧阳琴,李艳萌,徐安健,周冬虎,李振坤,黄坚. GTF2H2通过介导AKT信号通路影响肝癌细胞Hep3B的增殖和迁移*[J]. 中国生物工程杂志, 2021, 41(6): 4-12.
[5] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[6] 陈玉琼,谭文华,刘海峰,陈根. miR-29a通过调控PTEN表达对脂多糖诱导人肺微血管内皮细胞损伤的保护作用研究*[J]. 中国生物工程杂志, 2021, 41(5): 8-16.
[7] 段阳阳,张凤亭,成江,石瑾,杨娟,李海宁. SIRT2抑制对MPP+诱导的帕金森病细胞模型凋亡和线粒体动态平衡的影响*[J]. 中国生物工程杂志, 2021, 41(4): 1-8.
[8] 徐安健,李艳萌,乌姗娜,张蓓,姚静怡. PHP14通过与Vimentin相互作用影响TGF-β诱导的肝细胞AML-12上皮-间质转化*[J]. 中国生物工程杂志, 2021, 41(2/3): 1-6.
[9] 栗波,王泽建,梁剑光,刘爱军,李海东. 等离子体作用结合氧限制模型选育利福霉素SV高产菌株 *[J]. 中国生物工程杂志, 2021, 41(2/3): 38-44.
[10] 蔡润泽,王正波,陈永昌. Mecp2影响Rett综合征中代谢功能的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 89-97.
[11] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[12] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[13] 郭广超,周于用,曹三杰,武耀民,伍锐,赵勤,文心田,黄小波,文翼平. 乙型脑炎病毒NS2A-C60A位点突变对其生物学特性影响研究*[J]. 中国生物工程杂志, 2020, 40(9): 1-10.
[14] 戴寒莹,徐克前. DNA双链断裂检测技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 55-62.
[15] 杨笑莹,李梦,赵威,唐敏,张志谦. 抗α2δ1/CD3双特异性抗体的制备和功能的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 9-14.