Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (10): 20-29    DOI: 10.13523/j.cb.20181003
研究报告     
解淀粉芽孢杆菌TF28抗菌脂肽芬芥素的分离鉴定及抑菌作用 *
刘宇帅1,2,张杰3,钟瑾3,李晶1,2,孟利强1,2,张淑梅1,2,**()
1 黑龙江省科学院微生物研究所 哈尔滨 150010 2 黑龙江省科学院高技术研究院 哈尔滨 150020
3 中国科学院微生物研究所 北京 100101
Isolation and Identification of Antibacterial Lipopeptides Fengycin Produced by Bacillus amyloliquefaciens TF28 and Its Anti-fungal Mechanism Studies
Yu-shuai LIU1,2,Jie ZHANG3,Jin ZHONG3,Jing LI1,2,Li-qiang MENG1,2,Shu-mei ZHANG1,2,**()
1 Institute of Microbiology of Heilongjiang Academy of Sciences, Harbin 150010, China
2 Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150020, China
 全文: PDF(2868 KB)   HTML
摘要:

对一株解淀粉芽孢杆菌TF28产生的抗菌脂肽进行分离鉴定及抑菌活性研究,采用酸沉淀、乙酸乙酯和甲醇萃取技术制备了抗菌脂肽粗提物,经过2次HPLC分离纯化,在保留时间32~42min内获得8个抗菌脂肽纯品,经MALDI-TOF-MS鉴定为芬芥素(fengycins),对尖孢镰刀菌和禾谷镰刀菌显示出较强的抑菌活性,该研究为提高菌株TF28抗菌脂肽产量的定向遗传改造奠定基础。

关键词: 解淀粉芽孢杆菌尖孢镰刀菌禾谷镰刀菌抗菌脂肽芬芥素    
Abstract:

The antifungal lipopeptides produced by Bacillus amyloliquefaciens TF28 have been isolated and identified and their antifungal activity have been studied. The extract of antifungal lipopeptides was prepared by acid precipitation, ethyl acetate and methanol extraction. After two rounds of HPLC separation, eight antifungal lipopeptides were obtained within 32~42 min of retention time, and they have been identified as fengycins by MALDI-TOF-MS, which show strong antifungal activity against Fusarium oxysporum and Fusarium graminearum. These results will contribute to the directional genetic manipulation of the strain TF28 to improve the yield of antifungal lipopeptides.

Key words: Bacillus amyloliquefaciens    Fusarium oxysporum    Fusarium graminearum    Antifungal lipopeptides    Fengycin
收稿日期: 2018-05-14 出版日期: 2018-11-09
ZTFLH:  Q939  
基金资助: * 中国科学院微生物研究所微生物资源前期开发国家重点实验室开放课题(SKLMR-20150604);黑龙江省省院科技合作项目(YS16C15);黑龙江省科学院青年创新基金面上项目(CXMS2017SW01)
通讯作者: 张淑梅     E-mail: 1401135157@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘宇帅
张杰
钟瑾
李晶
孟利强
张淑梅

引用本文:

刘宇帅,张杰,钟瑾,李晶,孟利强,张淑梅. 解淀粉芽孢杆菌TF28抗菌脂肽芬芥素的分离鉴定及抑菌作用 *[J]. 中国生物工程杂志, 2018, 38(10): 20-29.

Yu-shuai LIU,Jie ZHANG,Jin ZHONG,Jing LI,Li-qiang MENG,Shu-mei ZHANG. Isolation and Identification of Antibacterial Lipopeptides Fengycin Produced by Bacillus amyloliquefaciens TF28 and Its Anti-fungal Mechanism Studies. China Biotechnology, 2018, 38(10): 20-29.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20181003        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I10/20

图1  菌株TF28脂肽粗提物对病原真菌的抑菌作用
图2  菌株TF28脂肽粗提物的HPLC分析
图3  HPLC第一次分离纯化部分组份对尖孢镰刀菌的抑菌效果
图4  3个活性组份第二次HPLC分离纯化结果
图5  第二次分离纯化各组份的抑菌活性
序号
Constituents
相对分子量
[M +H]+
特征离子峰1
Characteristic ion peak 1
特征离子峰2
Characteristic ion peak 2
2-1 1463.7832 966 1 080
2-2 1491.8247 994 1 108
2-3 1505.8154 994 1 108
2-4 1447.7803 966 1 080
2-5 1491.7981 966 1 080
2-6 1475.8151 994 1 108
2-7 1519.8358 994 1 108
2-8 1489.8183 994 1 108
表1  抗菌脂肽MALDI-TOF-MS的结果与分析
图6  菌株TF28的8个活性组分MALDI-TOF-MS的一级质谱图
图7  菌株TF28的8个活性组分MALDI-TOF-MS的二级质谱图
[1] 车晓曦, 李社增, 李校堃 , 等. 1株解淀粉芽孢杆菌发酵培养基的设计及发酵条件的优化. 安徽农业科学, 2010,38(18):9402-9405.
doi: 10.3969/j.issn.0517-6611.2010.18.008
Che X X, Li S Z, Li X K , et al. Research on the design of the medium for the Amyloliquefaciens bacillus fermentation and optimization of its fermentation condition. Journal of Anhui Agricultural Sciences, 2010,38(18):9402-9405.
doi: 10.3969/j.issn.0517-6611.2010.18.008
[2] 郝建安, 曹志辉, 赵凤梅 , 等. 解淀粉芽孢杆菌NK10.BAhjaWT 抑真菌作用的研究. 微生物学通报, 2008,35(6):903-908.
doi: 10.3969/j.issn.0253-2654.2008.06.013
Hao J A, Cao Z H, Zhao F M , et al. Exploring the antifungal activity of Bacillus amyloliquefaciens NK10.BAhjaWT. Microbiology China, 2008,35(6):903-908.
doi: 10.3969/j.issn.0253-2654.2008.06.013
[3] Niazi A, Manzoor S, Bejai S , et al. Complete genome sequence of a plant associated bacterium Bacillus amyloliquefaciens subsp. plantarum UCMB5033. Stand Genomic Sci, 2014,9(3):718-725.
doi: 10.4056/sigs.4758653 pmid: 4148973
[4] 吴一晶, 林艺芬, 林河通 , 等. 生防菌解淀粉芽孢杆菌研究进展. 包装与食品机械, 2012,30(6) : 49-52.
doi: 10.3969/j.issn.1005-1295.2012.06.013
Wu Y J, Lin Y F, Lin H T , et al. Advances in the researches of biocontrol bacteria Bacillus amyloliquefaciens. Packaging and Food Machinery, 2012,30(6) : 49-52.
doi: 10.3969/j.issn.1005-1295.2012.06.013
[5] 张龙来, 康向辉, 魏孝义 , 等. 1株解淀粉芽孢杆菌 HN011抑菌次级代谢产物的分析. 华南农业大学学报, 2016,37(1) : 63-69.
Zhang L L, Kang X H, Wei X Y , et al. Research on secondary metabolites from Bacillus amyloliquefaciens strain HN011. Journal of South China Agricultural University, 2016,37(1) : 63-69.
[6] Stein T . Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol, 2005,56(4):845-857.
doi: 10.1111/j.1365-2958.2005.04587.x
[7] Montesinos E . Antimicrobial peptides and plant disease control. FEMS Microbiol Lett, 2007,270(1):1-11.
doi: 10.1111/j.1574-6968.2007.00683.x pmid: 17371298
[8] 汪静杰, 赵东洋, 刘永贵 , 等. 解淀粉芽孢杆菌 SWB16 菌株脂肽类代谢产物对球孢白僵菌的拮抗作用. 微生物学报, 2014,54(7) : 778-785.
doi: 10.13343/j.cnki.wsxb.2014.07.008
Wang J J, Zhao D Y, Liu Y G , et al. Antagonism against Beauveria bassiana by lipopeptide metabolites produced by entophyte Bacillus amyloliquefaciens strain SWB16. Acta Microbiologica Sinica, 2014,54(7) : 778-785.
doi: 10.13343/j.cnki.wsxb.2014.07.008
[9] Ongena M, Jacques P . Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol, 2008,16(3):115-125.
doi: 10.1016/j.tim.2007.12.009
[10] Alvarez F, Castro M, Principe A , et al. The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J Appl Microbiol, 2012,112(1):159-174.
doi: 10.1111/j.1365-2672.2011.05182.x pmid: 22017648
[11] 张淑梅, 沙长青, 王玉霞 , 等. 大豆内生细菌的分离及根腐病拮抗菌的筛选鉴定. 微生物学通报, 2008(10):1593-1599.
doi: 10.3969/j.issn.0253-2654.2008.10.016
Zhang S M, Sha C Q, Wang Y X , et al. Isolation and characterization of antifungal endophytic bacteria from soybean. Microbiology China, 2008(10):1593-1599.
doi: 10.3969/j.issn.0253-2654.2008.10.016
[12] Zhang S, Jiang W, Li J , et al. Whole genome shotgun sequence of Bacillus amyloliquefaciens TF28, a biocontrol entophytic bacterium. Stand Genomic Sci, 2016,11:73.
doi: 10.1186/s40793-016-0182-6 pmid: 5031281
[13] Zhang S, Wang Y, Meng L , et al. Isolation and characterization of antifungal lipopeptides produced by endophytic Bacillus amyloliquefaciens TF28. African Journal of Microbiology Research, 2012,6(8) : 1747-1755.
[14] 刘宇帅, 孟利强, 陈静宇 , 等. 解淀粉芽胞杆菌 TF28 产抗菌脂肽培养基优化. 微生物学杂志, 2017,37(3) : 52-58.
doi: 10.3969/j.issn.1005-7021.2017.03.010
Liu Y S, Meng L Q, Chen J Y , et al. Optimization of medium for the production of antifungal lipopeptides by Bacillus amyloliquefaciens TF28. Journal of Microbiology, 2017,37(3) : 52-58.
doi: 10.3969/j.issn.1005-7021.2017.03.010
[15] Vater J, Kablitz B, Wilde C , et al. Matrix-assisted laser desorption ionization--time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol, 2002,68(12):6210-6219.
doi: 10.1534/genetics.106.057034 pmid: 12450846
[16] de Faria A F, Stefani D, Vaz B G , et al. Purification and structural characterization of fengycin homologues produced by Bacillus subtilis LSFM-05 grown on raw glycerol. J Ind Microbiol Biotechnol, 2011,38(7):863-871.
doi: 10.1007/s10295-011-0980-1 pmid: 21607611
[17] Wang J, Liu J, Wang X , et al. Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. Lett Appl Microbiol, 2004,39(1):98-102.
doi: 10.1111/j.1472-765X.2004.01547.x pmid: 15189295
[18] 李宝庆, 鹿秀云, 郭庆港 , 等. 枯草芽孢杆菌BAB-1产脂肽类及挥发性物质的分离和鉴定. 中国农业科学, 2010,43(17):3547-3554.
doi: 10.3864/j.issn.0578-1752.2010.17.008
Li B Q, Lu X Y, Guo Q G , et al. Isolation and identification of lipopeptides and volatile compounds produced by Bacillus subtilis strain BAB-1, Scientia Agricultura Sinica, 2010,43(17):3547-3554.
doi: 10.3864/j.issn.0578-1752.2010.17.008
[19] 姬婧媛, 杨洁, 高小宁 , 等. 植物内生枯草芽孢杆菌E1R-j脂肽类化合物的分离鉴定及抑菌作用. 农药学学报, 2015,17(02):172-178.
doi: 10.3969/j.issn.1008-7303.2015.02.08
Ji J Y, Yang J, Gao X N , et al. Isolation and identification of lipopeptides produced by endophytic bacteria Bacillus subtilis E1R-j and its anti-fungal mechanism studies, Chinese Journal of Pesticide Science, 2015,17(02):172-178.
doi: 10.3969/j.issn.1008-7303.2015.02.08
[20] Deleu M, Paquot M, Nylander T . Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J, 2008,94(7):2667-2679.
doi: 10.1529/biophysj.107.114090 pmid: 18178659
[21] Arrebola E, Jacobs R, Korsten L . Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J Appl Microbiol 2010,108(2):386-395.
doi: 10.1111/j.1365-2672.2009.04438.x pmid: 19674188
[22] Maget-Dana R, Thimon L, Peypoux F , et al. Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie, 1992,74(12):1047-1051.
doi: 10.1016/0300-9084(92)90002-V pmid: 1292612
[23] Tao Y, Bie X M, Lv F X , et al. Antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifer. J Microbiol, 2011,49(1):146-150.
doi: 10.1007/s12275-011-0171-9 pmid: 21369992
[24] Ongena M, Duby F, Jourdan E , et al. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl Microbiol Biotechnol, 2005,67(5):692-698.
doi: 10.1007/s00253-004-1741-0 pmid: 15578181
[25] Ongena M, Jourdan E, Adam A , et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol, 2007,9(4):1084-1090.
doi: 10.1111/j.1462-2920.2006.01202.x pmid: 17359279
[1] 彭海丽,侯占铭. MDT1基因参与禾谷镰刀菌分生孢子发生和营养生长 *[J]. 中国生物工程杂志, 2020, 40(8): 10-18.
[2] 郭晶,侯占铭. Folpcs1基因对尖孢镰刀菌亚麻专化型的无性繁殖和营养生长的调控 *[J]. 中国生物工程杂志, 2020, 40(3): 48-64.
[3] 吴庆, 刘慧燕, 方海田, 何建国, 贺晓光, 于丽男, 王梦娇. 解淀粉芽孢杆菌高效合成胞苷的代谢调控机制及育种策略[J]. 中国生物工程杂志, 2015, 35(9): 122-127.
[4] 常玉梅, 侯占铭. 禾谷镰刀菌中FgPDE1基因的敲除及其功能的研究[J]. 中国生物工程杂志, 2015, 35(8): 59-67.
[5] 谢欢, 于慧敏, 沈忠耀. 芬芥素类脂肽生物表面活性剂的结构性能与合成强化[J]. 中国生物工程杂志, 2015, 35(7): 102-110.
[6] 孙力军, 王雅玲, 刘唤明, 徐德峰, 张永平, 聂芳红. 抗菌豆豉发酵菌株的筛选及其脂肽组分鉴定和特性研究[J]. 中国生物工程杂志, 2013, 33(7): 50-56.
[7] 周广麒, 马蓬勃, 刘俏, 权春善, 范圣第. 解淀粉芽孢杆菌Q-426培养基优化及抑菌活性的预测[J]. 中国生物工程杂志, 2013, 33(11): 21-26.
[8] 赵朋超, 权春善, 金黎明, 王丽娜, 范圣第. 氮源和碳源对解淀粉芽孢杆菌Q-426抗菌脂肽合成的影响[J]. 中国生物工程杂志, 2012, 32(10): 50-56.
[9] 曹海鹏, 卫若鹏, 何珊, 吕利群. 水产养殖用解淀粉芽孢杆菌微胶囊的安全性评价[J]. 中国生物工程杂志, 2012, 32(05): 58-65.
[10] 熊文, 杨学敏, 王建华, 权春善, 范圣第. DKPs对解淀粉芽孢杆菌Q-426抗菌活性物质基因表达量的影响[J]. 中国生物工程杂志, 2012, 32(03): 47-52.
[11] 魏浩, 陆兆新, 吕凤霞, 翟亚楠, 郭昊, 郝慧, 别小妹. Bacillus amyloliquefaciens ES-2发酵产抗菌脂肽消泡剂的筛选及脂肽的提取和纯化[J]. 中国生物工程杂志, 2011, 31(02): 85-90.
[12] 崔堂兵 刘清香. 尖孢镰刀菌生产蒽醌色素的液体发酵条件研究[J]. 中国生物工程杂志, 2010, 30(09): 56-61.
[13] 王英国,王军华,权春善,范圣第. 解淀粉芽孢杆菌抗菌活性物质的分离纯化及抑菌活性研究[J]. 中国生物工程杂志, 2007, 27(12): 41-45.