Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (8): 92-99    DOI: 10.13523/j.cb.20180812
综述     
细菌细胞壁生长调控机制研究进展 *
赵悦1,吴昊1,乔建军1,2,**()
1. 天津大学化工学院 系统生物工程教育部重点实验室 天津 300072
2. 天津大学化学化工协同创新中心合成生物学平台 天津 300072
Research on the Regulatory Mechanisms of Bacterial Cell Wall Growth
Yue ZHAO1,Hao WU1,Jian-jun QIAO1,2,**()
1. School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
2. Syn Bio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
 全文: PDF(788 KB)   HTML
摘要:

在细菌生长过程中,细胞壁起到维持细胞形状和完整性,抵抗内部膨胀压的作用。细胞壁的合成、分裂、再生、循环再利用等与细菌自身生长繁殖和应对环境压力息息相关。目前,细胞壁生长机理,细菌如何调控细胞壁生长及如何与其他细胞过程相协调的机制尚未研究清楚。细胞壁调控机制的解析对了解细菌细胞壁功能、确定药物的作用方式和发展新一代的治疗方法至关重要。对细菌调控细胞壁生长机制的国外研究进展进行了概述,重点阐述了支架蛋白、转录因子、非编码小RNA及蛋白相互作用调控细胞壁的合成、细胞分裂、压力响应的机制,总结了细胞壁调控机制在抗菌药物研发中的应用,并对未来的研究方向进行了展望。

关键词: 细胞壁支架蛋白转录因子小RNA蛋白相互作用    
Abstract:

Cell wall can maintain the shape and integrity of cell and resist internal expansion pressure during bacterial growth.The synthesis, division, regeneration, and recycling of cell wall are closely related to bacterial growth and the response to environmental stress. At present, the mechanism of cell wall growth, how to regulate cell wall growth and how to coordinate with other cellular processes remain largely unknown.The regulation mechanism of cell wall is very important for understanding the function of bacterial cell wall, determining the action of new drugs and developing the new generation of treatment methods. In this review, the bacterial regulatory mechanism of cell wall growth is summerized and the mechanisms of the scaffolding proteins, transcriptional regulators as well as small non-coding RNA and the protein-protein interaction to control the synthesis of cell wall, cell division and stress response are highlighted. In addition, the application of cell wall regulatory mechanism in the development of antibacterial drugs is summed up, and the future research direction is proposed.

Key words: Cell wall    Scaffolding proteins    Regulator    sRNA    Protein-protein interaction
收稿日期: 2018-04-13 出版日期: 2018-09-11
ZTFLH:  Q935  
基金资助: 国家自然科学基金(31570089);国家自然科学基金(31170076)
通讯作者: 乔建军     E-mail: jianjunq@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵悦
吴昊
乔建军

引用本文:

赵悦,吴昊,乔建军. 细菌细胞壁生长调控机制研究进展 *[J]. 中国生物工程杂志, 2018, 38(8): 92-99.

Yue ZHAO,Hao WU,Jian-jun QIAO. Research on the Regulatory Mechanisms of Bacterial Cell Wall Growth. China Biotechnology, 2018, 38(8): 92-99.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180812        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I8/92

图1  细菌细胞壁生长调控机制
图2  支架蛋白组成的肽聚糖合成复合物
[1] Johnson J W, Fisher J F, Mobashery S . Bacterial cell-wall recycling. Annals of the New York Academy of Sciences, 2013,1277(1):54-75.
doi: 10.1111/j.1749-6632.2012.06813.x
[2] Jousselin A, Kelley W L, Barras C , et al. The Staphylococcus aureus thiol/oxidative stress global regulator Spx controls trfA, a gene implicated in cell wall antibiotic resistance. Antimicrobial Agents & Chemotherapy, 2013,57(7):3283-3292.
[3] Sobhanifar S, King D T, Strynadka N C . Fortifying the wall: synthesis, regulation and degradation of bacterial peptidoglycan. Current Opinion in Structural Biology, 2013,23(5):695-703.
doi: 10.1016/j.sbi.2013.07.008 pmid: 23910891
[4] Hao P, Liang D, Cao L , et al. Promoting acid resistance and nisin yield of Lactococcus lactis F44 by genetically increasing D-Asp amidation level inside cell wall. Applied Microbiology & Biotechnology, 2017,101(15):6137-6153.
[5] Chapotchartier M P, Kulakauskas S . Cell wall structure and function in lactic acid bacteria. Microbial Cell Factories, 2014,13(S1):1-23.
doi: 10.1186/1475-2859-13-1
[6] Harris L K, Theriot J A . Relative rates of surface and volume synthesis set bacterial cell size. Cell, 2016,165(6):1479-1492.
doi: 10.1016/j.cell.2016.05.045 pmid: 27259152
[7] Typas A, Banzhaf M, Gross C A , et al. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nature Reviews Microbiology, 2012,10(2):123-136.
doi: 10.1038/nrmicro2677 pmid: 5433867
[8] Ojima I, Kumar K, Awasthi D , et al. Drug discovery targeting cell division proteins, microtubules and FtsZ. Bioorganic & Medicinal Chemistry, 2014,22(18):5060-5077.
doi: 10.1016/j.bmc.2014.02.036 pmid: 4156572
[9] Wang H, Xie L, Luo H , et al. Bacterial cytoskeleton and implications for new antibiotic targets. Journal of Drug Targeting, 2015,24(5):392-398.
doi: 10.3109/1061186X.2015.1095195 pmid: 26548775
[10] Barreteau H, Kovac A, Boniface A, et al. Cytoplasmic steps of peptidoglycan biosynthesis . Fems Microbiology Reviews, 2008,32(2):168-207.
doi: 10.1111/j.1574-6976.2008.00104.x pmid: 18266853
[11] Lovering A L, Safadi S S, Strynadka N C . Structural perspective of peptidoglycan biosynthesis and assembly. Annual Review of Biochemistry, 2012,81(7):451-478.
doi: 10.1146/annurev-biochem-061809-112742 pmid: 22663080
[12] Ruiz N . Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(40):15553-15557.
doi: 10.1073/pnas.0808352105
[13] Sauvage E, Kerff F, Terrak M , et al. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. Fems Microbiology Reviews, 2008,32(2):234-258.
doi: 10.1111/j.1574-6976.2008.00105.x pmid: 18266856
[14] Macheboeuf P, Contrerasmartel C, Job V , et al. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. Fems Microbiology Reviews, 2006,30(5):673-691.
doi: 10.1111/j.1574-6976.2006.00024.x pmid: 16911039
[15] Daniel R A, Errington J . Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell, 2003,113(6):767-776.
doi: 10.1016/S0092-8674(03)00421-5
[16] Shi H, Bratton B P, Gitai Z , et al. How to build a bacterial cell: MreB as the foreman of E.coli construction. Cell, 2018,172(6):1294-1305.
doi: 10.1016/j.cell.2018.02.050 pmid: 29522748
[17] Van F D E, Izoré T, Bharat T A , et al. Bacterial actin MreB forms antiparallel double filaments. Elife, 2014,3(3):e02634.
doi: 10.7554/eLife.02634 pmid: 24843005
[18] Kawai Y, Asai K, Errington J . Partial functional redundancy of MreB isoforms, MreB, Mbl and MreBH, in cell morphogenesis of Bacillus subtilis. Molecular Microbiology, 2009,73(4):719-731.
doi: 10.1111/mmi.2009.73.issue-4
[19] Kruse T, Bork-Jensen J, Gerdes K . The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Molecular Microbiology, 2005,55(1):78-89.
doi: 10.1111/j.1365-2958.2004.04367.x pmid: 15612918
[20] Ent F V D, Johnson C M, Persons L , et al. Bacterial actin MreB assembles in complex with cell shape protein RodZ. Embo Journal, 2010,29(6):1081-1090.
doi: 10.1038/emboj.2010.9 pmid: 20168300
[21] Morgenstein R M, Bratton B P, Nguyen J P , et al. RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(40):12510-12515.
doi: 10.1073/pnas.1509610112 pmid: 26396257
[22] Ursell T S, Nguyen J, Monds R D , et al. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(11):e1025.
doi: 10.1073/pnas.1317174111
[23] Aarsman M E, Piette A, Fraipont C , et al. Maturation of the Escherichia coli divisome occurs in two steps. Molecular Microbiology, 2005,55(6):1631-1645.
doi: 10.1111/j.1365-2958.2005.04502.x pmid: 15752189
[24] Aaron M, Charbon G, Hubert Lam , et al. The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Molecular Microbiology, 2007,64(4):938-952.
doi: 10.1111/mmi.2007.64.issue-4
[25] Rismondo J, Cleverley R M, Lane H V , et al. Structure of the bacterial cell division determinant GpsB and its interaction with penicillin-binding proteins. Molecular Microbiology, 2015,99(5):978-998.
[26] Cleverley R M, Rismondo J, Lockhart-Cairns M P , et al. Subunit arrangement in GpsB, a regulator of cell wall biosynthesis. Microbial Drug Resistance, 2016,22(6):446-460.
doi: 10.1089/mdr.2016.0050 pmid: 51118767
[27] Claessen D, Emmins R, Hamoen L W , et al. Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis. Molecular Microbiology, 2008,68(4):1029-1046.
doi: 10.1111/j.1365-2958.2008.06210.x
[28] Scheffers D J, Errington J . PBP1 is a component of the Bacillus subtilis cell division machinery. Journal of Bacteriology, 2004,186(15):5153-5156.
doi: 10.1128/JB.186.15.5153-5156.2004 pmid: 835841
[29] Oliva M A, Halbedel S, Freund S M , et al. Features critical for membrane binding revealed by DivIVA crystal structure. Embo Journal, 2010,29(12):1988-2001.
doi: 10.1038/emboj.2010.99
[30] Van B S, Celik I N, Kaval K G , et al. Protein-protein interaction domains of Bacillus subtilis DivIVA. Journal of Bacteriology, 2013,195(5):1012-1021.
doi: 10.1128/JB.02171-12 pmid: 3571322
[31] Fadda D, Santona A , D’Ulisse V, et al. Streptococcus pneumoniae DivIVA: localization and interactions in a MinCD-free context. Journal of Bacteriology, 2007,189(4):1288-1298.
doi: 10.1128/JB.01168-06
[32] Lenarcic R, Halbedel S, Visser L , et al. Localisation of DivIVA by targeting to negatively curved membranes. Embo Journal, 2009,28(15):2272-2282.
doi: 10.1038/emboj.2009.129 pmid: 2690451
[33] Gamba P, Veening J W, Saunders N J , et al. Two-step assembly dynamics of the Bacillus subtilis divisome. Journal of Bacteriology, 2009,191(13):4186-4194.
doi: 10.1128/JB.01758-08 pmid: 19429628
[34] Stahlberg H, Kutejová E, Muchová K , et al. Oligomeric structure of the Bacillus subtilis cell division protein DivIVA determined by transmission electron microscopy. Molecular Microbiology, 2004,52(5):1281-1290.
doi: 10.1111/j.1365-2958.2004.04074.x
[35] Dörr T, Alvarez L, Delgado F , et al. A cell wall damage response mediated by a sensor kinase/response regulator pair enables beta-lactam tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2015,113(2):404-409.
[36] Sun H, Yang Y, Xue T , et al. Modulation of cell wall synthesis and susceptibility to vancomycin by the two-component system AirSR in Staphylococcus aureus, NCTC8325. BMC Microbiology, 2013,13(1):286-296.
doi: 10.1186/1471-2180-13-286
[37] Bisicchia P, Noone D, Lioliou E , et al. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Molecular Microbiology, 2010,65(1):180-200.
doi: 10.1111/j.1365-2958.2007.05782.x pmid: 17581128
[38] Botella E, Devine S K, Hubner S , et al. PhoR autokinase activity is controlled by an intermediate in wall teichoic acid metabolism that is sensed by the intracellular PAS domain during the PhoPR-mediated phosphate limitation response of Bacillus subtilis. Molecular Microbiology, 2014,94(6):1242-1259.
doi: 10.1111/mmi.2014.94.issue-6
[39] Bhavsar A P, Erdman L K, Schertzer J W , et al. Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid. Journal of Bacteriology, 2004,186(23):7865-7873.
doi: 10.1128/JB.186.23.7865-7873.2004
[40] Lange R, Hengge-Aronis R . Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S. Journal of Bacteriology, 1991,173(14):4474-4481.
doi: 10.1128/jb.173.14.4474-4481.1991
[41] Freire P, Moreira R N, Arraiano C M . BolA inhibits cell elongation and regulates MreB expression levels. Journal of Molecular Biology, 2009,385(5):1345-1351.
doi: 10.1016/j.jmb.2008.12.026
[42] Eraso J M, Markillie L M, Mitchell H D , et al. The highly conserved MraZ protein is a transcriptional regulator in Escherichia coli. Journal of Bacteriology, 2014,196(11):2053-2066.
doi: 10.1128/JB.01370-13 pmid: 24659771
[43] Mariscotti J F, Quereda J J, García-Del P F , et al. The Listeria monocytogenes LPXTG surface protein Lmo1413 is an invasin with capacity to bind mucin. International Journal of Medical Microbiology, 2014,304(3-4):393-404.
doi: 10.1016/j.ijmm.2014.01.003
[44] Quereda J J, álvaro D. Ortega, Pucciarelli M G , et al. The Listeria Small RNA Rli27 regulates a cell wall protein inside eukaryotic cells by targeting a long 5'-UTR variant. Plos Genetics, 2014,10(10):e1004765.
doi: 10.1371/journal.pgen.1004765
[45] Cayrol B, Fortas E, Martret C , et al. Riboregulation of the bacterial actin-homolog MreB by DsrA small noncoding RNA. Integrative Biology Quantitative Biosciences from Nano to Macro, 2015,7(1):128-141.
doi: 10.1039/c4ib00102h pmid: 25407044
[46] Tétart F, Bouché J P . Regulation of the expression of the cell-cycle gene ftsZ by DicF antisense RNA-Division does not require a fixed number of FtsZ molecules. Molecular Microbiology, 1992,6(5):615-620.
doi: 10.1111/j.1365-2958.1992.tb01508.x
[47] Khan M A, Göpel Y, Milewski S , et al. Two small RNAs conserved in Enterobacteriaceae provide intrinsic resistance to antibiotics targeting the cell wall biosynthesis enzyme glucosamine-6-phosphate synthase. Frontiers in Microbiology, 2016,7:e1025.
[48] H?ltje J V . Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiology and Molecular Biology Reviews, 1998,62(1):181-203.
[49] Egan A J F, Jacob B, Inge V V , et al. Activities and regulation of peptidoglycan synthases. Philosophical Transactions of the Royal Society B Biological Sciences, 2015,370(1679):1-20.
doi: 10.1098/rstb.2015.0031 pmid: 4632607
[50] Typas A, Banzhaf M, Van D B V S B , et al. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell, 2010,143(7):1097-1109.
doi: 10.1016/j.cell.2010.11.038 pmid: 3060616
[51] Paradis-Bleau C, Markovski M, Uehara T , et al. Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell, 2010,143(7):1110-1120.
doi: 10.1016/j.cell.2010.11.037 pmid: 21183074
[52] Jean N L, Bougault C M, Lodge A , et al. Elongated structure of the outer-membrane activator of peptidoglycan synthesis LpoA: implications for PBP1A stimulation. Structure, 2014,22(7):1047-1054.
doi: 10.1016/j.str.2014.04.017
[53] Yin J, Sun Y, Mao Y , et al. PBP1a/LpoA but not PBP1b/LpoB are involved in regulation of the major β-lactamase gene blaA in Shewanella oneidensis. Antimicrobial Agents & Chemotherapy, 2015,59(6):3357-3364.
[54] Sathiyamoorthy K, Vijayalakshmi J, Tirupati B , et al. Structural analyses of the Haemophilus influenzae peptidoglycan synthase activator LpoA suggest multiple conformations in solution. Journal of Biological Chemistry, 2017,292(43):17626-17642.
doi: 10.1074/jbc.M117.804997
[55] Gray A N, Egan A J, Veer I L V , et al. Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division. eLife Sciences, 2015,4:e07118.
doi: 10.7554/eLife.07118
[56] Greene N G, Fumeaux C, Bernhardt T G . Conserved mechanism of cell-wall synthase regulation revealed by the identification of a new PBP activator in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 2018,115(12):3150-3155.
doi: 10.1073/pnas.1717925115
[57] Fraipont C, Alexeeva S, Wolf B , et al. The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli. Microbiology, 2011,157(1):251-259.
doi: 10.1099/mic.0.040071-0
[58] Mercer K L, Weiss D S . The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. Journal of Bacteriology, 2002,184(4):904-912.
doi: 10.1128/jb.184.4.904-912.2002
[59] Bing L, Persons L, Lee L , et al. Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli. Molecular Microbiology, 2015,95(6):945-970.
doi: 10.1111/mmi.12906
[60] Pichoff S, Du S, Lutkenhaus J . The bypass of ZipA by overexpression of FtsN requires a previously unknown conserved FtsN motif essential for FtsA-FtsN interaction supporting a model in which FtsA monomers recruit late cell division proteins to the Z ring. Molecular Microbiology, 2015,95(6):971-987.
doi: 10.1111/mmi.12907
[61] Grenga L, Rizzo A, Paolozzi L , et al. Essential and non-essential interactions in interactome networks: the Escherichia coli division proteins FtsQ-FtsN interaction. Environmental Microbiology, 2013,15(12):3210-3217.
doi: 10.1111/emi.2013.15.issue-12
[62] Müller P, Ewers C, Bertsche U , et al. The essential cell division protein FtsN interacts with the murein (peptidoglycan) synthase PBP1B in Escherichia coli. Journal of Biological Chemistry, 2007,282(50):36394-36402.
doi: 10.1074/jbc.M706390200
[63] Vollmer W, Joris B, Charlier P , et al. Bacterial peptidoglycan (murein) hydrolases. Fems Microbiology Reviews, 2008,32(2):259-286.
doi: 10.1111/j.1574-6976.2007.00099.x
[64] Uehara T, Parzych K R, Dinh T , et al. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. Embo Journal, 2010,29(8):1412-1422.
doi: 10.1038/emboj.2010.36 pmid: 20300061
[65] Uehara T, Dinh T, Bernhardt T G . LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. Journal of Bacteriology, 2009,191(16):5094-5107.
doi: 10.1128/JB.00505-09
[66] Clarke C A, Scheurwater E M, Clarke A J . The vertebrate lysozyme inhibitor ivy functions to inhibit the activity of lytic transglycosylase. Journal of Biological Chemistry, 2010,285(20):14843-14847.
doi: 10.1074/jbc.C110.120931
[67] Gautam A, Vyas R, Tewari R . Peptidoglycan biosynthesis machinery: a rich source of drug targets. Critical Reviews in Biotechnology, 2011,31(4):295-336.
doi: 10.3109/07388551.2010.525498 pmid: 21091161
[68] Michalopoulos A S, Livaditis I G, Gougoutas V . The revival of fosfomycin. International Journal of Infectious Diseases, 2011,15(11):e732.
doi: 10.1016/j.ijid.2011.07.007
[69] Bush K . Introduction to antimicrobial therapeutics reviews: the bacterial cell wall as an antimicrobial target. Annals of the New York Academy of Sciences, 2013, 1277(1): V-VII.
doi: 10.1111/nyas.12025
[70] Haranahalli K, Tong S, Ojima I . Recent advances in the discovery and development of antibacterial agents targeting the cell-division protein FtsZ. Bioorganic & Medicinal Chemistry, 2016,24(24):6354-6369.
[71] Hurley K A, Santos T M, Nepomuceno G M , et al. Targeting the bacterial division protein FtsZ. Journal of Medicinal Chemistry, 2016,59(15):6975-6998.
doi: 10.1021/acs.jmedchem.5b01098 pmid: 26756351
[72] Panda D, Bhattacharya D, Gao Q H , et al. Identification of agents targeting FtsZ assembly. Future Medicinal Chemistry, 2016,8(10):1111-1132.
doi: 10.4155/fmc-2016-0041 pmid: 27284850
[1] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[2] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[3] 王天柱,吴庆,张宁,王冬杰,许洲,罗伟,杜宗君. 鱼类黑色素合成及信号通路的研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 84-93.
[4] 岳文冉,岳俊燕,张秀娟,杨杞,韩晓东,王瑞刚,李国婧. 中间锦鸡儿CiNAC1基因促进转基因拟南芥叶片的衰老[J]. 中国生物工程杂志, 2018, 38(4): 24-29.
[5] 徐嘉威,贺花,张静,雷初朝,陈宏,黄永震. 转录因子KLF8基因结构及其功能研究进展[J]. 中国生物工程杂志, 2018, 38(4): 90-95.
[6] 赵秀丽, 周丹丹, 闫晓光, 吴昊, 财音青格乐, 李艳妮, 乔建军. 细菌小RNA的调控及在代谢工程中的应用[J]. 中国生物工程杂志, 2017, 37(6): 97-106.
[7] 刘怡萱, 边珍, 马红梅. 癌症基因治疗技术进展与展望[J]. 中国生物工程杂志, 2016, 36(5): 106-111.
[8] 马力, 吴昊, 王斌斌, 乔建军, 朱宏吉. 转录调控因子Rex的功能及调节机制研究进展[J]. 中国生物工程杂志, 2016, 36(10): 94-100.
[9] 张健, 吴昊, 李艳妮, 乔建军. 革兰氏阳性菌非编码小RNA的研究进展[J]. 中国生物工程杂志, 2016, 36(10): 106-114.
[10] 梁高峰, 何向峰, 陈宝安. miRNA在肿瘤分子诊断和治疗中的研究进展[J]. 中国生物工程杂志, 2015, 35(9): 57-65.
[11] 梁丽珠, 孙佳楠, 李恺, 刘明伟, 丁琛, 秦钧. 蛋白质组分析油酸对HepG2细胞转录因子DNA结合活性的影响[J]. 中国生物工程杂志, 2015, 35(5): 22-31.
[12] 秦瑶, 赵鸿彦, 张文航, 王冬梅. 线粒体转录因子A敲低转基因小鼠的研制[J]. 中国生物工程杂志, 2014, 34(7): 44-48.
[13] 成志勇, 梁文同, 王素云, 颜晓燕, 李华, 王宝艳, 田赫, 魏玉涛, 芦希. PTEN/NF-κB/Caspase信号通路对K562/ADM细胞阿霉素耐药逆转机制的研究[J]. 中国生物工程杂志, 2013, 33(3): 54-60.
[14] 孙昊, 卢存福, 郭允倩. LSD1通过和Oct4/Nanog相互作用调节诱导多能干细胞的形成[J]. 中国生物工程杂志, 2012, 32(12): 25-29.
[15] 李嘉平, 张先文, 陈信波. 转录因子结合位点共现研究进展[J]. 中国生物工程杂志, 2012, 32(09): 87-94.