Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (6): 70-76    DOI: 10.13523/j.cb.20180610
综述     
FoxO1在胰岛β细胞代谢灵活性受损及失代偿进程中的作用 *
冯琳晶1,于洋1,杜红伟1,2,**()
1 吉林大学基础医学院 长春 130021
2 吉林大学第一医院 长春 130021
The Role of FoxO1 in the Impaired Metabolic Flexibility and Decompensation Progress of Pancreatic Beta Cell
Lin-jing FENG1,Yang YV1,Hong-wei DU1,2,**()
1 School of Basic Medical Sciences, Jilin University, Changchun 130021, China
2 The First Hospital of Jilin University, Changchun 130021, China
 全文: PDF(1047 KB)   HTML
摘要:

葡萄糖及脂肪酸是胰岛β细胞的关键代谢底物,葡萄糖刺激胰岛β细胞分泌胰岛素是维持机体血糖稳态平衡的关键。胰岛素抵抗发生时,β细胞对能量代谢底物的选择失调,加速胰岛β细胞由代偿到胰岛β细胞失代偿的进程,是肥胖胰岛素抵抗最终发展为2型糖尿病的始动因素。核转录因子FoxO1属于Fox家族成员,在胰腺内广泛表达,在β细胞的代谢,发育,增殖过程中发挥着重要的调节作用。鉴于FoxO1在维持胰岛β细胞功能中的关键作用,现着重对FoxO1在胰岛β细胞代谢灵活性受损及失代偿过程发生中的作用调节进行阐述。为其作为调控胰岛β细胞功能的关键靶点提供参考。

关键词: 胰岛β细胞FoxO1代谢灵活性失代偿肥胖2型糖尿病    
Abstract:

It is well known that glucose and fatty acids are key metabolic substrates for pancreatic β-cells. Pancreatic β-cells secrete insulin by glucose stimulating to keep blood glucose levels within a homeostatic range. When insulin resistance occurs, β-cells metabolic flexibility has become the first victim of pancreatic β-cells dysfunction. Compensation to decompensation of pancreatic β-cells is the key for the development of obesity insulin resistance to type 2 diabetes. Nuclear transcription factor FoxO1 (forkhead box O1) belongs to the Fox family, which is widely expressed in pancreatic β-cells. FoxO1 is a key regulator of the insulin-signaling pathway, and is reported to play important roles in pancreatic β-cells differentiation, proliferation, apoptosis and stress resistance. In view of the key role of FoxO1 in the maintenance of pancreatic β-cells function, an overview focused on the role of FoxO1 in the impaired metabolic flexibility and decompensation progress of pancreatic beta cells is provided.

Key words: Pancreatic β-cells    FoxO1    Metabolic flexibility    Decompensation    Obesity    T2DM
收稿日期: 2018-01-03 出版日期: 2018-07-06
ZTFLH:  R967  
基金资助: * 国家自然科学基金(81503122);吉林省科技发展计划基础研究计划自然科学基金资助项目(20150101156JC)
通讯作者: 杜红伟     E-mail: dhw_101@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
冯琳晶
于洋
杜红伟

引用本文:

冯琳晶,于洋,杜红伟. FoxO1在胰岛β细胞代谢灵活性受损及失代偿进程中的作用 *[J]. 中国生物工程杂志, 2018, 38(6): 70-76.

Lin-jing FENG,Yang YV,Hong-wei DU. The Role of FoxO1 in the Impaired Metabolic Flexibility and Decompensation Progress of Pancreatic Beta Cell. China Biotechnology, 2018, 38(6): 70-76.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180610        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I6/70

[1] Mugabo Y, Zhao S, Lamontagne J , et al. Metabolic fate of glucose and candidate signaling and excess-fuel detoxification pathways in pancreatic β-cells. Journal of Biological Chemistry, 2017,292(18):7407-7422.
doi: 10.1074/jbc.M116.763060 pmid: 28280244
[2] Mulder H . Metabolic coupling in pancreatic beta cells: lipolysis revisited. Diabetologia, 2016,59(12):2510-2513.
doi: 10.1007/s00125-016-4111-4 pmid: 27660005
[3] Zhang S , McMillan R P, Hulver M W , et al. Chickens from lines selected for high and low body weight show differences in fatty acid oxidation efficiency and metabolic flexibility in skeletal muscle and white adipose tissue. International Journal of Obesity, 2014,38(10):1374-1382.
doi: 10.1038/ijo.2014.8 pmid: 24441038
[4] Bround M J, Wambolt R, Luciani D S , et al. Cardiomyocyte ATP production, metabolic flexibility, and survival require calcium flux through cardiac ryanodine receptors in vivo. Journal of Biological Chemistry, 2013,288(26):18975-18986.
doi: 10.1074/jbc.M112.427062 pmid: 3696672
[5] Gopal K, Saleme B, Al Batran R , et al. FoxO1 regulates myocardial glucose oxidation rates via transcriptional control of pyruvate dehydrogenase kinase 4 expression. American Journal of Physiology Heart and Circulatory Physiology, 2017,313(3):H479-H490.
doi: 10.1152/ajpheart.00191.2017 pmid: 28687587
[6] Kitamura T, Ido Kitamura Y . Role of FoxO proteins in pancreatic beta cells. Endocrine Journal, 2007,54(4):507-515.
doi: 10.1507/endocrj.KR-109 pmid: 17510498
[7] Murtaza G, Khan A K, Rashid R , et al. FoxO transcriptional factors and long-term living. Oxidative Medicine and Cellular Longevity, 2017: 3494289.
doi: 10.1155/2017/3494289 pmid: 28894507
[8] Kandula V, Kosuru R, Li H , et al. Forkhead box transcription factor 1: Role in the pathogenesis of diabetic cardiomyopathy. Cardiovascular Diabetology, 2016,15:44.
doi: 10.1186/s12933-016-0361-1 pmid: 4784400
[9] Kim C G, Lee H, Gupta N , et al. Role of forkhead box Class O proteins in cancer progression and metastasis. Seminars in Cancer Biology, 2017.
doi: 10.1016/j.semcancer.2017.07.007 pmid: 28774834
[10] Tsuchiya K, Ogawa Y . Forkhead box class O family member proteins: The biology and pathophysiological roles in diabetes. Journal of Diabetes Investigation, 2017,8(6):726-734.
doi: 10.1111/jdi.12651
[11] Song M Y, Wang J, Ka S O , et al. Insulin secretion impairment in Sirt6 knockout pancreatic beta cells is mediated by suppression of the FoxO1-Pdx1-Glut2 pathway. Scientific Reports, 2016,6:30321.
doi: 10.1038/srep30321 pmid: 27457971
[12] Xing Y Q, Li A, Yang Y , et al. The regulation of FOXO1 and its role in disease progression. Life Sciences, 2018,193(Supplement C):124-131.
doi: 10.1016/j.lfs.2017.11.030 pmid: 29158051
[13] Goodpaster B H, Sparks L M . Metabolic flexibility in health and disease. Cell Metabolism, 2017,25(5):1027-1036
doi: 10.1016/j.cmet.2017.04.015 pmid: 28467922
[14] Prentki M, Matschinsky F M, Madiraju S R . Metabolic signaling in fuel-induced insulin secretion. Cell Metabolism, 2013,18(2):162-185.
doi: 10.1016/j.cmet.2013.05.018 pmid: 23791483
[15] Rutter G A, Pullen T J, Hodson D J , et al. Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochemical Journal, 2015,466(2):203-218.
doi: 10.1042/BJ20141384 pmid: 25697093
[16] Haeusler R A, Hartil K, Vaitheesvaran B , et al. Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nature Communications, 2014,5:5190.
doi: 10.1038/ncomms6190 pmid: 25307742
[17] Talchai S C, Accili D . Legacy effect of FoxO1 in pancreatic endocrine progenitors on adult β-cell mass and function. Diabetes. 2015,64(8):2868-2879.
doi: 10.2337/db14-1696 pmid: 25784544
[18] Lee S, Dong H H . FoxO integration of insulin signaling with glucose and lipid metabolism. Journal of Endocrinology, 2017,233(2):R67-R79.
doi: 10.1530/JOE-17-0002 pmid: 28213398
[19] Kim-Muller J Y, Kim Y J, Fan J , et al. FoxO1 deacetylation decreases fatty acid oxidation in beta-cells and sustains insulin secretion in diabetes. Journal of Biological Chemistry, 2016,291(19):10162-10172.
doi: 10.1074/jbc.M115.705608 pmid: 26984405
[20] Palmieri F . Mitochondrial transporters of the SLC25 family and associated diseases: a review. Journal of Inherited Metabolic Disease, 2014,37(4):565-575.
doi: 10.1007/s10545-014-9708-5 pmid: 24797559
[21] Palmieri F . The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Archiv, 2004,447(5):689-709.
doi: 10.1007/s00424-003-1099-7 pmid: 14598172
[22] Kim-Muller J Y, Zhao S, Srivastava S , et al. Metabolic inflexibility impairs insulin secretion and results in MODY-like diabetes in triple FoxO-deficient mice. Cell Metabolism, 2014,20(4):593-602.
doi: 10.1016/j.cmet.2014.08.012 pmid: 4192072
[23] 潘长玉 . 胰岛β细胞与胰岛素分泌--可塑性与失代偿 . 中华内分泌代谢杂志, 2009, 25(2): 2c-1-2c-3.
doi: 10.3760/cma.j.issn.1000-6699.2009.01.047
Pan C Y . Pancreatic β-cell and insulinsecretion--plasticity and decompensation. Chinese Journal of Endocrinology and Metabolism, 2009, 25(2): 2c-1-2c-3.
doi: 10.3760/cma.j.issn.1000-6699.2009.01.047
[24] Salvi R, Abderrahmani A . Decompensation of β-cells in diabetes: When pancreatic-cells are on ICE(R). Journal of Diabetes Research, 2014,2014(3):768024.
[25] Accili D, Talchai S C , Kim-Muller J Y, et al. When beta-cells fail: lessons from dedifferentiation. Diabetes, Obesity and Metabolism, 2016,18(Suppl 1):117-122.
doi: 10.1111/dom.12723 pmid: 27615140
[26] Zhang T, Kim D H, Xiao X , et al. FoxO1 plays an important role in regulating beta-cell compensation for insulin resistance in male mice. Endocrinology, 2016,157(3):1055-1070.
doi: 10.1210/en.2015-1852 pmid: 26727107
[27] Kobayashi M, Kikuchi O, Sasaki T , et al. FoxO1 as a double-edged sword in the pancreas: analysis of pancreas- and β-cell-specific FoxO1 knockout mice. American Journal of Physiology-Endocrinology and Metabolism, 2012,302(5):E603-E613.
[28] Baba S, Ueno Y, Kikuchi T , et al. A limonoid kihadanin b from immature citrus unshiu peels suppresses adipogenesis through repression of the Akt-FOXO1-PPARγ axis in adipocytes. Journal of Agricultural and Food Chemistry, 2016,64(51):9607-9615.
doi: 10.1021/acs.jafc.6b04521 pmid: 27977180
[29] Gupta D, Leahy A A, Monga N , et al. Peroxisome proliferator-activated receptor gamma (PPAR gamma) and its target genes are downstream effectors of FoxO1 protein in islet beta-cells: mechanism of beta-cell compensation and failure. Journal of Biological Chemistry, 2013,288(35):25440-25449.
doi: 10.1074/jbc.M113.486852
[30] Panten U, Willenborg M, Schumacher K , et al. Acute metabolic amplification of insulin secretion in mouse islets is mediated by mitochondrial export of metabolites, but not by mitochondrial energy generation. Metabolism, 2013,62(10):1375-1386.
doi: 10.1016/j.metabol.2013.05.006 pmid: 23790612
[31] MacDonald M J, Longacre M J, Langberg E C , et al. Decreased levels of metabolic enzymes in pancreatic islets of patients with type 2 diabetes. Diabetologia, 2009,52(6):1087-1091.
doi: 10.1007/s00125-009-1319-6 pmid: 2903059
[32] Pachera N, Papin J, Zummo F P , et al. Heterozygous inactivation of plasma membrane Ca(2+)-ATPase in mice increases glucose-induced insulin release and beta cell proliferation, mass and viability. Diabetologia, 2015,58(12):2843-2850.
doi: 10.1007/s00125-015-3745-y
[33] Kono T, Ahn G, Moss D R , et al. PPAR-gamma activation restores pancreatic islet SERCA2 levels and prevents beta-cell dysfunction under conditions of hyperglycemic and cytokine stress. Molecular Endocrinology, 2012,26(2):257-271.
doi: 10.1210/me.2011-1181
[34] Hayes H L, Zhang L, Becker T C , et al. A Pdx-1-regulated soluble factor activates rat and human islet cell proliferation. Molecular and Cellular Biology, 2016,36(23):2918-2930.
doi: 10.1128/MCB.00103-16
[35] Zhu Y, Liu Q, Zhou Z , et al. PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration. Stem Cell Research & Therapy, 2017,8:240.
doi: 10.1186/s13287-017-0694-z pmid: 5667467
[36] Lv L, Chen H, Sun J , et al. PRMT1 promotes glucose toxicity-induced β cell dysfunction by regulating the nucleo-cytoplasmic trafficking of PDX-1 in a FOXO1-dependent manner in INS-1 cells. Endocrine, 2015,49(3):669-682.
doi: 10.1007/s12020-015-0543-8 pmid: 25874535
[37] Huang T N, Hsueh Y P . Calcium/calmodulin-dependent serine protein kinase (CASK), a protein implicated in mental retardation and autism-spectrum disorders, interacts with T-Brain-1 (TBR1) to control extinction of associative memory in male mice. Journal of Psychiatry & Neuroscience: JPN, 2017,42(1):37-47.
pmid: 28234597
[38] Wang Y, Lin H, Hao N , et al. Forkhead box O1 mediates defects in palmitate-induced insulin granule exocytosis by downregulation of calcium/calmodulin-dependent serine protein kinase expression in INS-1 cells. Diabetologia, 2015,58(6):1272-1281.
doi: 10.1007/s00125-015-3561-4 pmid: 25796372
[39] 郝娜娜, 王天元, 王尧 等. 钙/钙调蛋白依赖性丝氨酸蛋白激酶在胰岛素囊泡分泌过程中的作用. 中华糖尿病杂志, 2016,8(11):677-680.
doi: 10.3760/cma.j.issn.1674-5809.2016.11.009
Hao N N, Wang T Y, Wang Y , et al. Role of calcium/calmodulin-dependent serine protein kinase in insulin granules secretion. Chinese Journal of Diabetes, 2016,8(11):677-680.
doi: 10.3760/cma.j.issn.1674-5809.2016.11.009
[40] Landry-Voyer A M, Bilodeau S, Bergeron D , et al. Human PDCD2L is an export substrate of CRM1 that associates with 40S ribosomal subunit precursors. Molecular and Cellular Biology, 2016,36(24):3019-3032.
doi: 10.1128/MCB.00303-16 pmid: 27697862
[41] Kramer J, Granier C J, Davis S , et al. PDCD2 controls hematopoietic stem cell differentiation during development. Stem Cells and Development, 2013,22(1):58-72.
doi: 10.1089/scd.2012.0074 pmid: 22800338
[42] Barboza N, Minakhina S, Medina D J , et al. PDCD2 functions in cancer cell proliferation and predicts relapsed leukemia. Cancer Biology & Therapy, 2013,14(6):546-555.
doi: 10.4161/cbt.24484 pmid: 3813571
[43] Chen Q, Yan C, Yan Q, Feng L, Chen J, Qian K . The novel MGC13096 protein is correlated with proliferation. Cell Biochemistry and Function, 2008,26(2):141-145.
doi: 10.1002/cbf.1410 pmid: 17393540
[44] Chen Q, Yan C Q, Liu F J , et al. Overexpression of the PDCD2-like gene results in inhibited TNF-[α] production in activated daudi cells. Human Immunology, 2008,69(4-5):259-265.
doi: 10.1016/j.humimm.2008.01.020 pmid: 18486760
[45] Yin Y, Yong W, Yu J N , et al. Pdcd2l promotes palmitate-induced pancreatic beta-cell apoptosis as a FoxO1 target gene. PLOS ONE, 2016,11(11):e0166692.
doi: 10.1371/journal.pone.0166692 pmid: 27861641
[46] Prentki M, Matschinsky Franz M, Madiraju SRM . Metabolic signaling in fuel-induced insulin secretion. Cell Metabolism, 2013,18(2):162-185.
doi: 10.1016/j.cmet.2013.05.018 pmid: 23791483
[47] Talchai S C, Accili D . Legacy effect of foxo1 in pancreatic endocrine progenitors on adult β-cell mass and function. Diabetes, 2015,64(8):2868-2879.
doi: 10.2337/db14-1696 pmid: 25784544
[1] 曾祥意,潘杰. 自噬调控白色脂肪细胞棕色化的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 63-73.
[2] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[3] 李艳伟, 马义, 韩磊, 肖兴, 党诗莹, 文涛, 王得华, 范志勇. Fas凋亡抑制分子FAIM 1表达缺失诱发单纯性肥胖的初步研究[J]. 中国生物工程杂志, 2017, 37(6): 37-42.
[4] 王得华, 马义, 韩磊, 肖兴, 李艳伟, 党诗莹, 范志勇, 文涛, 洪岸. 新型基因重组PACAP衍生物MPL-2的制备及其抗2型糖尿病作用研究[J]. 中国生物工程杂志, 2017, 37(5): 59-65.
[5] 耿燕, 任怡琳, 许正宏, 窦文芳. 基于胞内cAMP浓度测定融合蛋白GGH活性的改良方法[J]. 中国生物工程杂志, 2013, 33(11): 63-67.
[6] 杜彩贺, 胡芳, 魏婷婷, 张仁敏, 张红琳, 周东蕊, 陆祖宏. PCR-DGGE指纹图谱技术分析2型糖尿病模型小鼠胃微生物菌群结构[J]. 中国生物工程杂志, 2012, 32(03): 25-31.
[7] 刘延杰, 季虹, 林鲁霞, 臧学章, 宋长征, 荣海钦. Exendin-4的固相化学合成及鉴定[J]. 中国生物工程杂志, 2011, 31(02): 69-73.
[8] 孟建华. Cetus等公司开发TNF作为肥胖抑制剂[J]. 中国生物工程杂志, 1987, 7(5): 80-80.