Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (6): 77-85    DOI: 10.13523/j.cb.20180611
综述     
铁蛋白的生物工程应用 *
王玲,吴洋,张盛,齐浩()
天津大学化工学院 系统生物工程教育部重点实验室 天津大学化工协同创新中心合成生物学平台 天津 300072
Bioengineering Application of Ferritin
Ling WANG,Yang WU,Sheng ZHANG,Hao QI()
Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering,School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China
 全文: PDF(1918 KB)   HTML
摘要:

铁蛋白是一种普遍存在于生物体内的储铁蛋白,具有铁离子代谢、抗氧化胁迫及消除其他过量金属离子毒害作用的功能。随着对铁蛋白结构和生化功能认识的深入,铁蛋白作为一个含有四氧化三铁核心的特殊蛋白复合体,被广泛应用于生物医学、纳米材料、生物分子成像等各种生物工程领域。该综述针对已知的主要铁蛋白分子,论述了铁蛋白的结构及酶活性机理,基于铁蛋白的多功能分子骨架应用,以及基于铁蛋白磁性的生物分子开关等热点研究,最后对铁蛋白生物工程、生物医学领域的应用和发展进行了展望。

关键词: 铁蛋白磁性颗粒分子骨架    
Abstract:

Widely conserved iron-storage protein plays crucial role in ferric ion metabolism maintaining iron homeostasis, resisting oxidative stress and eliminating other toxic effects of excessive metal ions. With gaining the knowledge from structural and molecular studies, iron-storage protein complex in which iron cluster formed from absorbing free iron has been successfully applied in fields of biomedical engineering, nanomaterial, and biomolecule imaging. Herein, the recent progresses in studying the catalytic mechanism of iron cluster formation are briefly introduced. And the cutting-edge bioengineering applications in which iron-storage protein were engineered as a versatile molecular scaffold for presenting special chemicals, or natural magnetic particle for constructing remote control molecular machine are reviewed, although related researches has arisen academic argument.

Key words: Ferritin    Magnetic particle    Molecular scaffold
收稿日期: 2018-01-29 出版日期: 2018-07-06
ZTFLH:  Q71  
基金资助: * 国家自然科学基金资助项目(21476167)
通讯作者: 齐浩     E-mail: haoq@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王玲
吴洋
张盛
齐浩

引用本文:

王玲,吴洋,张盛,齐浩. 铁蛋白的生物工程应用 *[J]. 中国生物工程杂志, 2018, 38(6): 77-85.

Ling WANG,Yang WU,Sheng ZHANG,Hao QI. Bioengineering Application of Ferritin. China Biotechnology, 2018, 38(6): 77-85.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180611        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I6/77

图1  铁蛋白及铁蛋白亚基结构示意图
图2  铁蛋白铁氧化酶活性中心作用机制示意图
图3  铁蛋白功能的人工改造示意图
图4  铁蛋白的修饰方法
图5  铁蛋白磁性控制开关
图6  铁蛋白解离与组装的条件转变
[1] Laufberger V . Sur la cristallisation de la Ferritin. Soc Chim Biol, 1937,19:1575-1582.
[2] Crichton R R . Structure and function of Ferritin. Angewandte Chemie International Edition, 1973,12(1):57-65.
doi: 10.1002/anie.197300571 pmid: 4631281
[3] Meldrum F C, Heywood B R, Mann S . MagnetoFerritin: in vitro synthesis of a novel magnetic protein. Science, 1992,257(5069):522-524.
doi: 10.1126/science.1636086 pmid: 1636086
[4] Wong K K W, Douglas T, Gider S , et al. Biomimetic synthesis and characterization of magnetic proteins (magnetoFerritin). Chemistry of Materials, 1998,10(1):279-285.
doi: 10.1021/cm970421o
[5] Liu X, Lopez P A, Giessen T W , et al. Engineering genetically-encoded mineralization and magnetism via directed evolution. Scientific Reports, 2016,6:38019.
doi: 10.1038/srep38019 pmid: 27897245
[6] Theil E C . Ferritin: the protein nanocage and iron biomineral in health and in disease. Inorganic Chemistry, 2013,52(21):12223-12233.
doi: 10.1021/ic400484n pmid: 3882016
[7] Bernacchioni C, Ghini V, Pozzi C , et al. Loop electrostatics modulates the intersubunit interactions in Ferritin. ACS Chemical Biology, 2014,9(11):2517-2525.
doi: 10.1021/cb500431r pmid: 25148224
[8] Giorgi A, Mignogna G, Bellapadrona G , et al. The unusual co-assembly of H-and M-chains in the ferritin molecule from the Antarctic teleosts Trematomus bernacchii and Trematomus newnesi. Archives of Biochemistry and Biophysics, 2008,478(1):69-74.
doi: 10.1016/j.abb.2008.06.022 pmid: 18625196
[9] Morrissey J, Bowler C . Iron utilization in marine cyanobacteria and eukaryotic algae. Frontiers in Microbiology, 2012,3:43.
doi: 10.3389/fmicb.2012.00043 pmid: 3296057
[10] Rahmanpour R , Bugg T D H . Assembly in vitro of Rhodococcus jostii RHA1 encapsulin and peroxidase DypB to form a nanocompartment. The FEBS Journal, 2013,280(9):2097-2104.
doi: 10.1111/febs.12234 pmid: 23560779
[11] Rahmanpour R , Bugg T D H . Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5: oxidation of Mn (II) and polymeric lignin by Dyp1B. Archives of Biochemistry and Biophysics, 2015,574:93-98.
doi: 10.1016/j.abb.2014.12.022 pmid: 25558792
[12] Zeth K, Hoiczyk E, Okuda M . Ferroxidase-mediated iron oxide biomineralization: Novel pathways to multifunctional nanoparticles. Trends in Biochemical Sciences, 2016,41(2):190-203.
doi: 10.1016/j.tibs.2015.11.011 pmid: 26719091
[13] Bradley J M , Le Brun N E, Moore G R . Ferritins: furnishing proteins with iron. Journal of Biological Inorganic Chemistry, 2016,21(1):13-28.
doi: 10.1007/s00775-016-1336-0 pmid: 26825805
[14] Ghirlando R, Mutskova R, Schwartz C . Enrichment and characterization of Ferritin for nanomaterial applications. Nanotechnology, 2015,27(4):045102.
doi: 10.1088/0957-4484/27/4/045102 pmid: 26656976
[15] He D, Marles-Wright J . Ferritin family proteins and their use in bionanotechnology. New Biotechnology, 2015,32(6):651-657.
doi: 10.1016/j.nbt.2014.12.006 pmid: 4571993
[16] Arosio P, Elia L, Poli M . Ferritin, cellular iron storage and regulation. IUBMB Life, 2017,69(6):414-422.
doi: 10.1002/iub.1621 pmid: 28349628
[17] Jutz G, van Rijn P, Santos Miranda B , et al. Ferritin: a versatile building block for bionanotechnology. Chemical Reviews, 2015,115(4):1653-1701.
doi: 10.1021/cr400011b pmid: 25683244
[18] Honarmand Ebrahimi K, Hagedoorn P L, Hagen W R . Unity in the biochemistry of the iron-storage proteins Ferritin and bacterioFerritin. Chemical Reviews, 2014,115(1):295-326.
doi: 10.1021/cr5004908 pmid: 25418839
[19] 杨彩云, 曹长乾, 蔡垚 , 等. 铁蛋白表面修饰及其应用. 化学进展, 2015,28(1):91-102.
Yang C Y, Cao C Q, Cai Y , et al. Surface modification and application of iron protein. Progress in Chemistry, 2015,28(1):91-102.
[20] McHugh C A, Fontana J, Nemecek D , et al. A virus capsid‐like nanocompartment that stores iron and protects bacteria from oxidative stress. The EMBO Journal, 2014,33(17):1896-1911.
doi: 10.15252/embj.201488566 pmid: 25024436
[21] Theil E C . Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry. Current Opinion in Chemical Biology, 2011,15(2):304-311.
doi: 10.1016/j.cbpa.2011.01.004 pmid: 21296609
[22] Zeth K . Dps biomineralizing proteins: Multifunctional architects of nature. Biochemical Journal, 2012,445(3):297-311.
doi: 10.1042/BJ20120514 pmid: 22788214
[23] Arosio P, Ingrassia R, Cavadini P . Ferritins: A family of molecules for iron storage, antioxidation and more. Biochimica et Biophysica Acta (BBA)-General Subjects, 2009,1790(7):589-599.
doi: 10.1016/j.bbagen.2008.09.004 pmid: 18929623
[24] Park S, You X, Imlay J A . Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx-mutants of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(26):9317-9322.
doi: 10.1073/pnas.0502051102 pmid: 15967999
[25] Chiancone E, Ceci P . The multifaceted capacity of Dps proteins to combat bacterial stress conditions: detoxification of iron and hydrogen peroxide and DNA binding. Biochimica et Biophysica Acta (BBA)-General Subjects, 2010,1800(8):798-805.
doi: 10.1016/j.bbagen.2010.01.013 pmid: 20138126
[26] Burgess A W, Johansen P M . Assault: patterns of emergency visits. Journal of Psychiatric Nursing and Mental Health Services, 1976,14(11):32-36.
[27] Ullrich S, Schüler D . Cre-lox-based method for generation of large deletions within the genomic magnetosome island of Magnetospirillum gryphiswaldense. Applied and Environmental Microbiology, 2010,76(8):2439-2444.
doi: 10.1128/AEM.02805-09 pmid: 2849187
[28] Granick S, Michaelis L. Ferritin II . ApoFerritin of horse spleen. Journal of Biological Chemistry, 1943,147(1):91-97.
[29] Bradley J M , Le Brun N E, Moore G R . Ferritins: furnishing proteins with iron. Journal of Biological Inorganic Chemistry, 2016,21(1):13-28.
doi: 10.1007/s00775-016-1336-0 pmid: 26825805
[30] Tatur J, Hagen W R, Matias P M . Crystal structure of the Ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. Journal of Biological Inorganic Chemistry, 2007,12(5):615-630.
doi: 10.1007/s00775-007-0212-3 pmid: 1915633
[31] Treffry A, Zhao Z, Quail M A , et al. How the presence of three iron binding sites affects the iron storage function of the Ferritin (EcFtnA) of Escherichia coli. FEBS letters, 1998,432(3):213-218.
doi: 10.1016/S0014-5793(98)00867-9 pmid: 9720927
[32] Tatur J, Hagen W R . The dinuclear iron‐oxo ferroxidase center of Pyrococcus furiosus Ferritin is a stable prosthetic group with unexpectedly high reduction potentials. FEBS letters, 2005,579(21):4729-4732.
doi: 10.1016/j.febslet.2005.07.045 pmid: 16107254
[33] Ebrahimi K H, Hagedoorn P L, Jongejan J A , et al. Catalysis of iron core formation in Pyrococcus furiosus Ferritin. Journal of Biological Inorganic Chemistry, 2009,14(8):1265.
doi: 10.1007/s00775-009-0571-z pmid: 2771142
[34] Stillman T J, Hempstead P D, Artymiuk P J , et al. The high-resolution X-ray crystallographic structure of the Ferritin (EcFtnA) of Escherichia coli; comparison with human H Ferritin (HuHF) and the structures of the Fe 3+ and Zn 2+ derivatives . Journal of Molecular Biology, 2001,307(2):587-603.
doi: 10.1006/jmbi.2001.4475
[35] Yao H, Jepkorir G, Lovell S , et al. Two distinct Ferritin-like molecules in Pseudomonas aeruginosa: the product of the bfrA gene is a bacterial Ferritin (FtnA) and not a bacterioFerritin (Bfr). Biochemistry, 2011,50(23):5236-5248.
doi: 10.1021/bi2004119 pmid: 3130351
[36] Ebrahimi K H, Bill E, Hagedoorn P L , et al. The catalytic center of Ferritin regulates iron storage via Fe (II)-Fe (III) displacement. Nature Chemical Biology, 2012,8(11):941-948.
doi: 10.1038/nchembio.1071 pmid: 23001032
[37] Maity B, Abe S, Ueno T . Observation of gold sub-nanocluster nucleation within a crystalline protein cage. Nature Communications, 2017,8:14820.
doi: 10.1038/ncomms14820 pmid: 5357307
[38] Zhang Y, Fu J, Chee S Y , et al. Rational disruption of the oligomerization of the mini‐Ferritin E. coli DPS through protein‐protein interface mutation. Protein Science, 2011,20(11):1907-1917.
doi: 10.1002/pro.731 pmid: 21898653
[39] Gryzik M, Srivastava A, Longhi G , et al. Expression and characterization of the Ferritin binding domain of Nuclear Receptor Coactivator-4 (NCOA4). Biochimica et Biophysica Acta (BBA)-General Subjects, 2017,1861(11):2710-2716.
doi: 10.1016/j.bbagen.2017.07.015 pmid: 28754384
[40] Zhang Y, Zhou J, Ardejani M S , et al. Designability of aromatic interaction networks at E. coli BacterioFerritin B-Type Channels. Molecules, 2017,22(12):2184.
doi: 10.3390/molecules22122184 pmid: 29292762
[41] Liu X, Lopez P A, Giessen T W , et al. Engineering genetically-encoded mineralization and magnetism via directed evolution. Scientific Reports, 2016,6:38019.
doi: 10.1038/srep38019 pmid: 27897245
[42] Matsumoto Y, Chen R, Anikeeva P , et al. Engineering intracellular biomineralization and biosensing by a magnetic protein. Nature Communications, 2015,6:8721.
doi: 10.1038/ncomms9721 pmid: 4667635
[43] Uchida M, Kang S, Reichhardt C , et al. The Ferritin superfamily: Supramolecular templates for materials synthesis. Biochimica et Biophysica Acta (BBA)-General Subjects, 2010,1800(8):834-845.
[44] Kishida Y, Olsen B R, Berg R A , et al. Two improved methods for preparing Ferritin-protein conjugates for electron microscopy. The Journal of Cell Biology, 1975,64(2):331-339.
doi: 10.1083/jcb.64.2.331 pmid: 803973
[45] Hainfeld J F . Uranium-loaded apoferritin with antibodies attached: molecular design for uranium neutron-capture therapy. Proceedings of the National Academy of Sciences, 1992,89(22):11064-11068.
doi: 10.1073/pnas.89.22.11064 pmid: 1438316
[46] Tang Z, Wu H, Zhang Y , et al. Enzyme-mimic activity of ferric nano-core residing in Ferritin and its biosensing applications. Analytical Chemistry, 2011,83(22):8611-8616.
doi: 10.1021/ac202049q pmid: 21910434
[47] Vannucci L, Falvo E, Fornara M , et al. Selective targeting of melanoma by PEG-masked protein-based multifunctional nanoparticles. International Journal of Nanomedicine, 2012,7:1489.
doi: 10.2147/IJN.S28242 pmid: 3356193
[48] Matsumura S, Aoki I, Saga T , et al. A tumor-environment-responsive nanocarrier that evolves its surface properties upon sensing matrix metalloproteinase-2 and initiates agglomeration to enhance T2 relaxivity for magnetic resonance imaging. Molecular Pharmaceutics, 2011,8(5):1970-1974.
doi: 10.1021/mp2001999
[49] Kim S, Kim G S, Seo J , et al. Double-chambered Ferritin platform: dual-function payloads of cytotoxic peptides and fluorescent protein. Biomacromolecules, 2015,17(1):12-19.
doi: 10.1021/acs.biomac.5b01134 pmid: 26646195
[50] Zhen Z, Tang W, Chen H , et al. RGD-modified apoFerritin nanoparticles for efficient drug delivery to tumors. ACS Nano, 2013,7(6):4830-4837.
doi: 10.1021/nn305791q pmid: 3705644
[51] Ducasse R, Wang W A , Navarro M G J , et al. Programmed self-assembly of a biochemical and magnetic scaffold to trigger and manipulate microtubule structures. Scientific Reports, 2017,7:11344.
doi: 10.1038/s41598-017-10297-y pmid: 28900114
[52] Radoul M, Lewin L, Cohen B , et al. Genetic manipulation of iron biomineralization enhances MR relaxivity in a Ferritin-M6A chimeric complex. Scientific Reports, 2016,6:26550.
doi: 10.1038/srep26550
[53] Wang Q, Mercogliano C P, Löwe J . A Ferritin-based label for cellular electron cryotomography. Structure, 2011,19(2):147-154.
doi: 10.1016/j.str.2010.12.002 pmid: 21300284
[54] Meister M . Physical limits to magnetogenetics. Elife, 2016,5:e17210.
doi: 10.7554/eLife.17210 pmid: 27529126
[55] Stanley S A, Gagner J E, Damanpour S , et al. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science, 2012,336(6081):604-608.
doi: 10.4161/cib.21148 pmid: 2255625720
[56] Stanley S A, Sauer J, Kane R S , et al. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nature Medicine, 2015,21(1):92-98.
doi: 10.1038/nm.3730 pmid: 25501906
[57] Qin S, Yin H, Yang C , et al. A magnetic protein biocompass. Nature Materials, 2016,15(2):217.
doi: 10.1038/nmat4484 pmid: 26569474
[58] Cyranoski D . Compass protein attracts heap of criticism. Nature, 2017,544(7648):16.
doi: 10.1038/544016a pmid: 28383006
[59] Damiani V, Falvo E, Fracasso G , et al. Therapeutic efficacy of the novel stimuli-sensitive nano-ferritins containing doxorubicin in a head and neck cancer model. International Journal of Molecular Sciences, 2017,18(7):1555.
doi: 10.3390/ijms18071555 pmid: 28718812
[60] Mazzucchelli S, Truffi M, Baccarini F , et al. H-Ferritin-nanocaged olaparib: a promising choice for both BRCA-mutated and sporadic triple negative breast cancer. Scientific Reports, 2017,7(1):7505.
doi: 10.1038/s41598-017-07617-7 pmid: 5548799
[61] Suci P A, Kang S, Young M , et al. A streptavidin-protein cage janus particle for polarized targeting and modular functionalization. Journal of the American Chemical Society, 2009,131(26):9164-9165.
doi: 10.1021/ja9035187 pmid: 19522495
[62] Williams S M, Chandran A V, Prakash S , et al. A mutation directs the structural switch of DNA binding proteins under starvation to a Ferritin-like protein cage. Structure, 2017.
doi: 10.1016/j.str.2017.07.006 pmid: 28823472
[1] 单洪瑜, 刘仁泽, 郝梦琪, 董晓雨, 郭长虹, 郭东林. 植物铁蛋白与氧化胁迫应激[J]. 中国生物工程杂志, 2017, 37(2): 121-126.
[2] 迟胜男,李增兰,张纯,殷爽,冯翠,王祺,刘永东,苏志国. 聚乙二醇20k修饰与转铁蛋白偶联睫状神经营养因子的生物活性对比研究 *[J]. 中国生物工程杂志, 2017, 37(12): 59-66.
[3] 刘婧莹, 刘晨浪, 张允雷, 王世奇, 夏立秋, 张友明. 牛乳铁蛋白肽(LfcinB)在苏云金芽胞杆菌中的融合表达[J]. 中国生物工程杂志, 2016, 36(8): 23-30.
[4] 殷爽, 冯翠, 张纯, 王祺, 王健, 余蓉, 刘永东, 苏志国. 转铁蛋白-PEG-睫状神经营养因子的制备及其生物活性评价[J]. 中国生物工程杂志, 2016, 36(4): 43-49.
[5] 闫亚彬, 蔡勤, 蔡琳琳, 龚秀丽, 朱怡文, 管翌华, 黄英. 比较牛催乳素与生长激素对外源基因表达的影响[J]. 中国生物工程杂志, 2013, 33(8): 91-97.
[6] 张锦霞, 范志强, 刘晔, 张守峰, 杨洋, 王颖, 张菲, 扈荣良. 牛乳铁蛋白肽转基因小鼠的构建[J]. 中国生物工程杂志, 2013, 33(2): 9-13.
[7] 蒋世忠, 闫亚彬, 谢飞, 龚秀丽, 黄英, 吕宝忠. 转基因小鼠乳腺上皮细胞的体外培养及其对催乳素反应的研究[J]. 中国生物工程杂志, 2012, 32(03): 20-24.
[8] 王峰, 孙晗笑, 李秀英, 张光, 莫雪梅. vMIP-II-TfN融合蛋白在毕赤酵母中的表达和纯化[J]. 中国生物工程杂志, 2011, 31(10): 23-28.
[9] 白雪晶, 杨雅麟, 滕达, 王建华. 基于抗菌导向的乳铁蛋白异源表达研究进展[J]. 中国生物工程杂志, 2011, 31(03): 107-112.
[10] 卢燕 石屹峰. 利用噬菌体表面展示技术筛选转铁蛋白黏附肽的研究[J]. 中国生物工程杂志, 2010, 30(04): 89-94.
[11] 颜冰,范明,黄培堂. 转铁蛋白受体单链抗体与BDNF融合蛋白的表达及活性鉴定[J]. 中国生物工程杂志, 2006, 26(03): 1-5.
[12] 张豪, 沈明山, 方宏清, 王明刚, 陈惠鹏. 转铁蛋白/转铁蛋白受体介导的药物运输[J]. 中国生物工程杂志, 2004, 24(6): 1-5.
[13] 冯兴军, 王建华, 杨雅麟, 滕达, 刘立恒. 乳铁蛋白肽(Lactoferricin)作用机制研究进展[J]. 中国生物工程杂志, 2004, 24(1): 23-26.
[14] 龙华, 曾勇, 郑英. 转铁蛋白的研究与发展[J]. 中国生物工程杂志, 2001, 21(2): 32-39.
[15] 钟珍萍, 吴乃虎. 真核生物mRNA稳定性的分子机制[J]. 中国生物工程杂志, 1997, 17(3): 33-37.