Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (2): 46-53    DOI: 10.13523/j.cb.20180207
研究报告     
重组大肠杆菌转化甘油合成聚3-羟基丙酸-co-乳酸 *
赵志强1,2*,LacmataTamekouStephen1,3*,咸漠1,刘修涛1,2,冯新军1**(),赵广1**()
1 中国科学院青岛生物能源与过程研究所 生物基材料重点实验室 青岛 266101
2 中国科学院大学 北京 100049
3 喀麦隆德尚大学 德尚 999108
Biosynthesis of Poly (3-hydroxypropionate-co-lactate) from Glycerol by Engineered Escherichia coli
Zhi-qiang ZHAO1,2*,Tamekou Stephen LACMATA1,3*,Mo XIAN1,Xiu-tao LIU1,2,Xin-jun FENG1**(),Guang ZHAO1**()
1 CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences, Qingdao 266101, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Biochemistry, University of Dschang, Dschang 999108, Cameroon
 全文: PDF(889 KB)   HTML
摘要:

聚羟基脂肪酸酯作为性质优良的生物塑料,引起了广泛的关注。由于聚羟基脂肪酸合成酶PhaC特异性较强,难以通过生物合成方法获得含乳酸单体聚合物。为了实现乳酸的聚合,PhaC的筛选至关重要。以甘油为底物,通过引入Klebsiella pneumoniae的甘油脱水酶DhaB123及其激活因子GdrAB以及Salmonella typhimurium LT2的丙醛脱氢酶基因PduP,获得3-羟基丙酰辅酶A;通过引入Megasphaera elsdenii DSM 20460的丙酰辅酶A转移酶PCT,获得乳酰辅酶A;并对3种不同聚羟基脂肪酸合成酶的作用进行考察。在Pseudomonas putida的原始酶PhaC1或者PhaC2的作用下,不能实现乳酸的聚合;而在双位点突变(Ser325Thr和Gln481Lys)的PhaC1(STQK)存在条件下,重组菌可以利用甘油合成聚3-羟基丙酸-co-乳酸。经过对溶氧、有机氮源等发酵条件的优化,聚3-羟基丙酸-co-乳酸的产量可以达到0.22g/L,占细胞干重的3.2%,是含乳酸单体聚合物生物合成研究的一次有益尝试。

关键词: 聚3-羟基丙酸-co-乳酸聚羟基脂肪酸合成酶丙酰辅酶A转移酶位点突变甘油    
Abstract:

Polyhydroxyalkanoates (PHAs) have received considerable attention because of their material properties and wide applications for packaging, biofuels, and biomedicine.Polylactate (PLA) isarepresentative bio-based polyester, whichis chemically synthesized rather than synthesized bybacteria, because of the substrate specificity of PHA synthase (PhaC). To produce lactate-based polyesters, itiscriticalto obtain a PhaC capable of LA-polymerization. Glycerol dehydratase DhaB123 and its reactivating factorGdrAB from Klebsiella pneumoniae, and propionaldehyde dehydrogenase PduP from Salmonella typhimurium LT2 were overexpressed to convert glycerol into 3-hydroxypropionyl-CoA;propionyl-CoA transferase (PCT) from Megasphaera elsdenii DSM 20460were used to obtain lactyl-CoA; and three different PhaC were introduced and examined for poly (3-hydroxypropionate-co-lactate) (P(3HP-co-LA)). The wild type enzyme PhaC1, PhaC2 from Pseudomonas putida can’t polymerize lactyl-CoA into polymer. Only with double mutant (Ser325Thr and Gln481Lys) PhaC1(STQK), 3HP-CoA and lactyl-CoA were copolymerized into P(3HP-co-LA)in engineered Escherichia coli. Under optimal conditions, theP(3HP-co-LA) production and contentwere 0.22 g/Land 3.2%(wt/wt[celldryweight]), respectively.A good example was provided for lactate-basedbiopolymerby biosynthesis.

Key words: Poly(3-hydroxypropionate-co-lactate)    Polyhydroxyalkanoate    Synthase Propionyl-CoA transferase    Site mutation    Glycerol
收稿日期: 2017-08-30 出版日期: 2018-03-21
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(31670089);中国科学院重点部署项目资助项目(ZDRW-ZS-2016-3M)
作者简介: 通讯作者 赵广。E-mail: zhaoguang@qibebt.ac.cn;冯新军。E-mail:fengxj@qibebt.ac.cn;
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵志强
LacmataTamekouStephen
咸漠
刘修涛
冯新军
赵广

引用本文:

赵志强,LacmataTamekouStephen,咸漠,刘修涛,冯新军,赵广. 重组大肠杆菌转化甘油合成聚3-羟基丙酸-co-乳酸 *[J]. 中国生物工程杂志, 2018, 38(2): 46-53.

Zhi-qiang ZHAO,Tamekou Stephen LACMATA,Mo XIAN,Xiu-tao LIU,Xin-jun FENG,Guang ZHAO. Biosynthesis of Poly (3-hydroxypropionate-co-lactate) from Glycerol by Engineered Escherichia coli. China Biotechnology, 2018, 38(2): 46-53.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180207        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I2/46

图1  以甘油为碳源合成P(3HP-co-LA)的代谢途径示意图
菌株、质粒及引物 特征描述/引物序列 来源/酶切位点
E. coli DH5α 用于重组质粒的构建和保存的菌株 全氏金公司
E. coli JM109(DE3) 蛋白表达和发酵的宿主菌株 TaKaRa
K. pneumoniae ATCC25955 肺炎克雷伯氏菌,携带甘油脱水酶基因dhaB123和甘油脱水酶激活因子gdrAB ATCC
S.typhimurium LT2 鼠伤寒沙门氏菌,携带丙醛脱氢酶基因pduP CGMCC
Pseudomonas putida 恶臭假单胞菌,携带PHA合成酶基因phaC1phaC2 本实验室保藏
puC57-pct 携带Megasphaera elsdenii DSM 20460来源的丙酰辅酶A转移酶基因pct 金唯智合成
pACYCDuet-f0 重组表达载体,T7启动子,pACYCDuet-1携带dhaB123gdrABpduP基因,氯霉素抗性 本研究构建
pET21a-f1 重组表达载体,T7启动子,pET21a携带phaC1pct基因,氨苄抗性 本研究构建
pET21a-f2 重组表达载体,T7启动子,pET21a携带phaC2pct基因,氨苄抗性 本研究构建
pTV118N-pp 重组表达载体,lac启动子,pTV118N携带phac(STQK)和pct基因,氨苄抗性 北海道大学
dhaB123-F CGCCATATGAAAAGATCAAAACGATTTG NdeI
dhaB123-R CACGGTACCGCTTAGCTTCCTTTACGCAG KpnI
gdrA-F GAGAATTCGTGAGCGGAGGTCAGCATGC EcoRI
gdrA-R TTAGATCTCCCACTGACCAAAGCTG
gdrB-F CAGCTTTGGTCAGTGGGAGATCTAAAACGAGGGGACCGTC
gdrB-R CAGAAGCTTCAGTTTCTCTCACTTAACG HindIII
菌株、质粒及引物 特征描述/引物序列 来源/酶切位点
pduP-F CTGAAGCTTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCGCCAT
CGCGGCTATTAAC
HindIII
pduP-R CAGAAGCTTAGCGAATAGAAAAGCCGTTG HindIII
phaC-1-F GGAATTCCATATGATGAGTAACAAGAACAACGATGAGC NdeI
phaC-1-R CGGGATCCTCAACGCTCGTGAACGTAGGTG BamHI
phaC-2-F GGAATTCCATATGATGACAGACAAACCGGCCAAAGGATC NdeI
phaC-2-R CGGGATCCTCATCGGGTCAGCACGTAGGT BamHI
表1  本研究使用的菌株、载体和引物及其特征描述
图2  本研究使用重组载体示意
图3  基因克隆及重组载体的酶切验证
图4  核磁共振检测结果
图5  溶氧对细胞生长和产量的影响
图6  有机氮源对细胞生长和产量的影响
[1] Sudesh K, Abe H Doi Y , Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progressin Polymer Science,2000,25(10):1503-1555.
doi: 10.1016/S0079-6700(00)00035-6
[2] AndesrsonAJ, Dawes E A . Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological Reviews, 1990,54(4):450-472.
pmid: 372789
[3] Steinbüchel A . Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromolecular Bioscience, 2001,1(1):1-24.
doi: 10.1002/(ISSN)1616-5195
[4] Chen G Q, Wu Q, Xi J Z , et al. Microbial production of biopolyesters-polyhydroxyalkanoates. Progress in Natural Science, 2000,10(11):843-850.
[5] Lee S Y . Bacterial polyhydroxyalkanoates. Biotechnology and Bioengineering, 1996,49(1):1-14.
doi: 10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P pmid: 18623547
[6] Lageveen RG, Huisman G W, Preusting H , et al. Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Applied and Environmental Microbiology, 1988,54(12):2924-2932.
doi: 10.1177/0042098014568070 pmid: 204405
[7] ShamalaT R, Chandrashekar A , VijayendraS, et al. Identification of polyhydroxyalkanoate (PHA)-producing Bacillus spp. using the polymerase chain reaction (PCR). Journal of Applied Microbiology, 2003,94(3):369-374.
doi: 10.1046/j.1365-2672.2003.01838.x pmid: 12588544
[8] Smith R L, West T P, Gibbons W R . Rhodospirillum rubrum: utilization of condensed corn solubles for poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) production. Journal of Applied Microbiology, 2008,104(5):1488-1494.
doi: 10.1111/j.1365-2672.2007.03685.x pmid: 18179537
[9] Page W J, Manchak J, Rudy B . Formation of poly (hydroxybutyrate-co-hydroxyvalerate) by Azotobacter vinelandii UWD. Applied and Environmental Microbiology, 1992,58(9):2866-2873.
[10] Doi Y, Kawaguchi Y, Koyama N , et al. Synthesis and degradation of polyhydroxyalkanoates in Alcaligenes eutrophus. FEMS Microbiology Letters, 1992,103(2-4):103-108.
doi: 10.1111/j.1574-6968.1992.tb05827.x
[11] Matsumoto K I, Nagao R, Murata T , et al. Enhancement of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production in the transgenic Arabidopsis thaliana by the in vitro evolved highly active mutants of polyhydroxyalkanoate (PHA) synthase from Aeromonas caviae. Biomacromolecules, 2005,6(4):2126-2130.
doi: 10.1021/bm050113g
[12] Somleva M N, Snell K D, Beaulieu J J , et al. Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop. Plant Biotechnology Journal, 2008,6(7):663-678.
doi: 10.1111/j.1467-7652.2008.00350.x pmid: 18498309
[13] Lacmata S T, Kuiate J R, Ding Y , et al. Enhanced poly(3-hydroxypropionate) production via β-alanine pathway in recombinant Escherichia coli. PLoS One, 2017,12(3):e0173150.
doi: 10.1371/journal.pone.0173150 pmid: 5333900
[14] Theodorou E C, Theodorou M C . Involvement of the AtoSCDAEB regulon in the high molecular weight poly-(R)-3-hydroxybutyrate biosynthesis in phaCAB + Escherichia coli . Metabolic Engineering, 2012,14(4):354-365.
doi: 10.1016/j.ymben.2012.03.010 pmid: 22484344
[15] Shen X W, Yang Y, Jian J , et al. Production and characterization of homopolymer poly(3-hydroxyvalerate) (PHV) accumulated by wild type and recombinant Aeromonas hydrophil astrain 4AK4. Bioresource Technology, 2009,100(18):4296-4299.
doi: 10.1016/j.biortech.2009.03.065 pmid: 19395256
[16] 曹燕琳, 尹静波, 颜世峰 . 生物可降解聚乳酸的改性以及应用研究进展. 高分子通报, 2006,84(10):90-97.
doi: 10.3969/j.issn.1003-3726.2006.10.014
Cao Y L, Yin J P, Yan S F . Recent research advance in biodegradable poly (lactic acid) (PLA): modification and application, Chinese Polymer Bulletin, 2006,84(10):90-97.
doi: 10.3969/j.issn.1003-3726.2006.10.014
[17] 甄光明 . 乳酸及聚乳酸的工业发展及市场前景. 生物产业技术, 2015,61(1):42-52.
doi: 10.3969/j.issn.1674-0319.2015.01.005
Zhen G M . Industrial development and market prospect of lactic acid and poly (lactic acid) Biotechnology and Business, 2015,61(1):42-52.
doi: 10.3969/j.issn.1674-0319.2015.01.005
[18] Takase K, Taguchi S Doi Y Enhanced synthesis of poly(3-hydroxybutyrate) in recombinant Escherichia coli # by means of error-prone PCR mutagenesis,saturation mutagenesis,and in vitro recombination of the type II polyhydroxyalkanoate synthase gene. Journal of Biochemistry , 2003,133(1):139-145.
doi: 10.1093/jb/mvg015
[19] Brandl H, Gross RA, Lenz R W , et al. Pseudomonas oleovorans as a source of poly(b-Hydroxyalkanoates) for potential applications as biodegradable polyesters. Appliedand Environmental Microbiology, 1988,54(8):1977-1982.
[20] Feng X, Xian M, Liu W , et al. Biosynthesis of poly(3-hydroxypropionate) from glycerol using engineered Klebsiella pneumoniae strain without vitamin B12. Bioengineered, 2015,6(2):77-81.
doi: 10.1080/21655979.2015.1011027 pmid: 25621933
[21] Bernd H A . Polyester synthases: Natural catalysts for plastics. Biochemical Journal, 2003,376(1):15-33.
doi: 10.1042/bj20031254
[22] Nomura CT, Taguchi S . PHA synthase engineering toward superbiocatalysts for custom-made biopolymers. Applied Microbiology and Biotechnology, 2007,73(5):969-979.
doi: 10.1007/s00253-006-0566-4 pmid: 17123079
[1] 郭广超,周于用,曹三杰,武耀民,伍锐,赵勤,文心田,黄小波,文翼平. 乙型脑炎病毒NS2A-C60A位点突变对其生物学特性影响研究*[J]. 中国生物工程杂志, 2020, 40(9): 1-10.
[2] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[3] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[4] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[5] 杨林,王柳月,李慧美,陈华波. 改进的多片段重叠延伸PCR制作基因多位点突变 *[J]. 中国生物工程杂志, 2019, 39(8): 52-58.
[6] 阚婷婷,宗迅成,苏永君,王婷婷,李闯,胡蝶,邬敏辰. 定点突变改善PvEH1对邻甲基苯基缩水甘油醚的催化特性 *[J]. 中国生物工程杂志, 2019, 39(6): 9-16.
[7] 郭晓璐,龚秀芳,陈家锋,丁晨曦,胡丹,潘秀珍,王长军. 2型猪链球菌磷酸甘油酸激酶基因的克隆表达及酶活性测定 *[J]. 中国生物工程杂志, 2018, 38(3): 16-23.
[8] 战春君, 李翔, 刘国强, 刘秀霞, 杨艳坤, 白仲虎. 巴斯德毕赤酵母甘油转运体的发现及功能研究[J]. 中国生物工程杂志, 2017, 37(7): 48-55.
[9] 窦一涵, 李映, 赵鹏, 范如婷, 田平芳. 重组肺炎克雷伯氏菌转化甘油为聚3-羟基丙酸[J]. 中国生物工程杂志, 2017, 37(6): 86-92.
[10] 徐珊,李任强,张继福,张云,孙爱君,胡云峰. 乙二醇缩水甘油醚交联海藻酸钠-羧甲基纤维素钠固定化脂肪酶 *[J]. 中国生物工程杂志, 2017, 37(12): 77-83.
[11] 张震阳, 杨艳坤, 战春君, 李翔, 刘秀霞, 白仲虎. Pichia pastoris X-33 ΔGT2缓解甘油对AOX1的阻遏并用于外源蛋白的高效表达[J]. 中国生物工程杂志, 2017, 37(1): 38-45.
[12] 司洪宇, 王丙莲, 梁晓辉, 张晓东. 酶电极法快速测定甘油含量的研究[J]. 中国生物工程杂志, 2016, 36(12): 79-85.
[13] 王振伟, 李刚锐, 李琳俐, 王帅坤, 孟延发. 兔肌3-磷酸甘油脱氢酶的提纯及性质研究[J]. 中国生物工程杂志, 2013, 33(2): 70-76.
[14] 王萍, 江木兰, 张银波, 万霞, 梁焯, 龚阳敏. 载有磷酸甘油激酶基因启动子的新表达载体的构建以及在发酵性丝孢酵母中启动外源基因的表达研究[J]. 中国生物工程杂志, 2012, 32(03): 39-46.
[15] 蒋慧慧, 李丰功, 陆毅, 饶志明. 三种酵母启动子在毕赤酵母中的功能比较[J]. 中国生物工程杂志, 2011, 31(5): 60-68.