Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (6): 56-62    DOI: 10.13523/j.cb.20170609
研究报告     
体外苏氨酸循环固碳途径的构建
巨晓芝1,2, 袁倩倩2,3, 马春玲2, 肖冬光1, 马红武2
1. 天津科技大学生物工程学院 天津 300457;
2. 中国科学院系统微生物工程重点实验室 中国科学院天津工业生物技术研究所 天津 300308;
3. 天津大学化工学院 天津 300072
In vitro Construction of the Threonine Cycle Pathway for Carbon Fixation
JU Xiao-zhi1,2, YUAN Qian-qian2,3, MA Chun-ling2, XIAO Dong-guang1, MA Hong-wu2
1. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China;
2. Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
3. College of Chemical Engineering, Tianjin University, Tianjin 300072, China
 全文: PDF(723 KB)   HTML
摘要: 乙酰CoA是生物体代谢过程中重要的代谢物,也是许多有价值产品合成的前体物质。然而传统途径中通过丙酮酸脱羧生成乙酰CoA碳得率较低,因此构建一条高效的乙酰CoA合成途径具有重要的意义。由于在体外验证文献报道的高碳摩尔得率合成乙酰CoA的苏氨酸循环固碳途径,有较重要的理论意义和应用价值。因此在体外构建了苏氨酸循环固碳途径合成乙酰CoA,通过分段加酶的方式将其在体外进行了验证。在体外验证时,以丙酮酸为底物,则丝氨酸脱氨酶(TdcB)为循环途径的最后一步反应。结果表明,当加入途径中除丝氨酸脱氨酶之外的酶时,测得的乙酰CoA浓度约1.5 mmol/L,待反应达到平衡时,加入丝氨酸脱氨酶,丝氨酸转化为丙酮酸,丙酮酸再次进入循环,乙酰CoA的量增加了约0.2 mmol/L,由此得出结论在体外苏氨酸循环实现了固碳。
关键词: 体外乙酰CoA固碳途径苏氨酸循环    
Abstract: Acetyl-CoA is a central metabolite and an important precursor for the synthesis of many valuable products. However, the carbon yield of acetyl-CoA is relatively low due to the carbon loss at the pyruvate decarboxylation step. Therefore, it was of great significance to construct an efficient pathway for acetyl-CoA synthesis. The attempts is to validate the high carbon molar yield reported in the literature to synthesize acetyl-CoA threonine carbonization pathway, which has important theoretical significance and application value.So, carbon fixation pathway via threonine cycle was used to synthesize acetyl CoA in vitro. When pyruvate was used as the substrate, serine deaminase (TdcB) was the last step of the cycling pathway in the in vitro characterization. The results showed that when all enzymes except serine deaminase were added to the reaction system, the measured acetyl CoA concentration was about 1.5 mmol/L at an nearly equilibrium state. After serine deaminase was added, serine to pyruvate and re-entry into the circulation, acetyl CoA concentration was increased 0.2 mmol/L. This result indicated that carbon fixation was achieved via the threonine cycle in vitro.
Key words: In vitro    Threonine cycle    Carbon fixation pathway    Acetyl-CoA
收稿日期: 2017-01-10 出版日期: 2017-06-25
ZTFLH:  Q815  
基金资助: 国家重点基础研究计划(2012CB725203)、天津市科技支撑计划重点项目(14ZCZDSY00060)、中科院重点部署项目(ZDRW-ZS-2016-3)资助项目
通讯作者: 马红武     E-mail: ma_hw@tib.cas.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马春玲
马红武
巨晓芝
袁倩倩
肖冬光

引用本文:

巨晓芝, 袁倩倩, 马春玲, 肖冬光, 马红武. 体外苏氨酸循环固碳途径的构建[J]. 中国生物工程杂志, 2017, 37(6): 56-62.

JU Xiao-zhi, YUAN Qian-qian, MA Chun-ling, XIAO Dong-guang, MA Hong-wu. In vitro Construction of the Threonine Cycle Pathway for Carbon Fixation. China Biotechnology, 2017, 37(6): 56-62.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170609        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I6/56

[1] Earle Swim H,Lester O Krampitz.Acetic acid oxidation by Escherichia coli:evidence for the occurrence of a tricarboxylic acid cycle.Journal of Bacteriology, 1954, 67(4):419-425.
[2] Trainer M A,Charles T C.The role of PHB metabolism in the symbiosis of rhizobia with legumes.ApplMicrobial Biotechnology, 2006, 71(4):377-386.
[3] Priyanka Sharma,Bijender Kumar Bajaj.Production and characterization of poly-3-hydroxybutyrate fromBacillus cereus PS 10. International Journal of Biological Macromolecules, 2015, 241-248.
[4] Hanai T. Engineered synthetic pathway for isopropanol production in Escherichia coli. Appled and Environmental Microbiology, 2007, 7814-7818.
[5] Sabrina Hoffmeister,Marzena Gerdom.Acetone production with metabolically engineered strains of Acetobacterium woodii.Metabolic Engineering, 2016, 36(2016) 37-47.
[6] Antje May, Ralf-J rg Fischer. A modified pathway for the production of acetone in Escherichia coli.Metabolic Engineering, 2013, 15(2013) 218-225.
[7] Lin Zhenquan, Yan Zhang,Qianqian Yuan, et al. Metabolic engineering of Escherichia coli for poly (3-hydroxybutyrate) production via threonine bypass.Microb Cell Factary, 2015, 14:185.
[8] Orth J D,Conrad T M,Na J, et al. comprehensive genome- scale reconstruction of E.coli metabolism-2011. Mol Syst Biol, 2011,7:535.
[9] Szczesiul M, Wampler D E. Regulation of a metabolic system in vitro:synthesis of threonine from aspartic acid. Biochemistry, 1976, 15, 2236-2244.
[10] Christophe Chassagnole, Badr Raiss, Eric Quentin, et al. Integrated study of threonine-pathway enzyme kinetics in Escherichia coli. Biochemical Journal, 2001, 356, 415-423.
[11] Tonya N Zeczycki, Ann L Menefee, Sarawut Jitrapakdee,et al. Activation and inhibition of pyruvate carboxylase from Rhizobium etli. Biochemistry, 2011, 50(45):9694-9707.
[12] Burman J D, Harris R L, Hauton K A, et al. The iron-sulfur cluster in the L-serine dehydratase TdcG from Escherichia coli is required for enzyme activity. FEBS Lett, 2004, 576:442-444.
[13] Xiao Zhang, Elaine Newman.Deficiency in L-serine deaminase results in abnormal growth and cell division of Escherichia coli K-12. Molecular Microbiology, 2008, 69(4), 870-881.
[14] Robert M Cicchillo, Melissa A Baker, Eric J Schnitzer, et al. Escherichia coli L -serine deaminase requires a 4Fe-4S Cluster in catalysis. Biochemistry and Molecular Biology, 2004, 32418-32425.
[15] Grabowski R, Hofmeister A E, Buckel W. Bacterial L-serine dehydratases:a new family of enzymes containing iron-sulfur clusters. Trends Biochem Sci, 1993, 18(8):297-300.
[1] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[2] 陈晨,胡劲超,曹姗姗,门冬. 新型冠状病毒抗原快速检测研发现状及展望*[J]. 中国生物工程杂志, 2021, 41(6): 119-128.
[3] 范月蕾,王跃,王恒哲,李丹丹,毛开云. 新型冠状病毒体外诊断技术研发现状与展望 *[J]. 中国生物工程杂志, 2021, 41(2/3): 150-161.
[4] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[5] 盛晓菁,齐晓雪,徐蕾,戚智青,刁勇. 基因克隆及组装技术的研究进展 *[J]. 中国生物工程杂志, 2020, 40(1-2): 133-139.
[6] 王兆官,吴洋,齐浩. 人工合成多样性突变文库研究进展*[J]. 中国生物工程杂志, 2019, 39(11): 113-122.
[7] 武福云,姚美连,吴胜英,汪雄,李珊. 钙库调控的钙通道Orai1体外研究方法的建立 *[J]. 中国生物工程杂志, 2018, 38(9): 41-47.
[8] 轩换玲, 李静, 罗锋, 代先祝. 耐冷希瓦氏菌外膜蛋白的体外折叠研究[J]. 中国生物工程杂志, 2016, 36(3): 61-67.
[9] 康学军, 杨怡姝. HIV-1潜伏感染体外实验模型研究进展[J]. 中国生物工程杂志, 2015, 35(8): 96-102.
[10] 高珊, 陈炜, 于磊, 李静, 孙彩显, 高杰, 刘牧. 小鼠和大鼠的胚胎培养基及若干相关问题[J]. 中国生物工程杂志, 2015, 35(7): 83-93.
[11] 赵瑞媛, 刘春霞, 李慧鹏, 王申元, 周欢敏. 饲养层细胞对绵羊胚胎干细胞体外培养的影响[J]. 中国生物工程杂志, 2015, 35(2): 18-24.
[12] 冯琪, 王颖. SLiCE体外组装方法的优化和应用[J]. 中国生物工程杂志, 2015, 35(10): 59-65.
[13] 常卓, 侯玲玲, 周雅琼, 彭洪尚, 柯屾. 哺乳动物精子体外诱导的研究进展[J]. 中国生物工程杂志, 2013, 33(3): 135-142.
[14] 于永生, 张立春, 罗晓彤, 刘铮, 张树敏. 骨骼肌特异表达线虫ω-3脂肪酸去饱和酶基因载体的构建与验证[J]. 中国生物工程杂志, 2011, 31(7): 27-31.
[15] 卢松冲, 朱金启, 李杰, 张洪霞. 采用俄罗斯橄榄叶片和茎段诱导产生不定芽的高效再生方法[J]. 中国生物工程杂志, 2011, 31(04): 113-118.