Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (8): 99-104    DOI: 10.13523/j.cb.20160813
综述     
成纤维细胞生长因子与骨相关疾病的研究进展
龚卫月1, 田海山1, 李校堃1,2, 姜潮1,2
1. 温州医科大学药学院 温州 325035;
2. 吉林农业大学生物反应器与药物开发教育部工程研究中心 长春 130118
Fibroblast Growth Factor and Bone Related Diseases
GONG Wei-yue1, TIAN Hai-shan1, LI Xiao-kun1,2, JIANG Chao1,2
1. Wenzhou Medical University, Whenzhou 325035, China;
2. Bioreactor with the Drug Development Project of the Ministry of Education Research Center, Jilin Agricultural University, Changchun 130118, China
 全文: PDF(685 KB)   HTML
摘要:

骨相关疾病是目前临床常见慢性疾病之一,特别对中老年人的健康带来严重损害。研究发现,成纤维细胞生长因子(FGFs)家族成员对骨相关疾病有治疗作用,主要为骨质疏松和骨关节炎及这两种疾病引起的其他综合症,但其作用机制尚不清楚。针对不同FGFs对不同骨相关疾病的相关作用进行总结,并对其潜在治疗作用进行了综述。

关键词: 骨关节炎成纤维细胞生长因子骨质疏松    
Abstract:

Bone diseases is one of the common clinical chronic disease in the elderly, and serious damage to health. Previous studies show that FGF family members can treat bone-related diseases, as osteoporosis, osteoarthritis and other syndrome caused by these two disease. However, it's still not completely clear for the mechanism. In addition, different FGF species, ages have different therapeutic effects on bone. Therefore, the different FGF for different bone-related diseases was summarized.

Key words: Osteoarthritis    Osteoporosis    Fibroblast Growth Factor
收稿日期: 2015-11-30 出版日期: 2016-08-25
ZTFLH:  W819  
通讯作者: 李校堃, 姜潮     E-mail: xiaokunli@163.net;chaojiang10@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

龚卫月, 田海山, 李校堃, 姜潮. 成纤维细胞生长因子与骨相关疾病的研究进展[J]. 中国生物工程杂志, 2016, 36(8): 99-104.

GONG Wei-yue, TIAN Hai-shan, LI Xiao-kun, JIANG Chao. Fibroblast Growth Factor and Bone Related Diseases. China Biotechnology, 2016, 36(8): 99-104.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160813        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I8/99

[1] 韩萨茹拉.成纤维细胞生长因子(FGF)研究进展.安徽农业科学, 2009, 37(7):3008-3010. SA Ru-la. Review on fibroblast growth factor (FGF). Journal of Anhui Agri Sci, 2009,37(7):3008-3010.
[2] Nunes Q M, Li Y, Sun C, et al. Fibroblast growth factors as tissue repair and regeneration therapeutics. Peerj, 2015, 4(5):e1535.
[3] Kan S H, Elanko N, Johnson D, et al. Genomic screening of fibroblast growth-factor receptor 2 reveals a wide spectrum of mutations in patients with syndromic craniosynostosis. Am J Hum Genet, 2002,70(2):472-486.
[4] Teven C M, Farina E M, Rivas J, et al. Fibroblast growth factor (FGF) signaling in development and skeletal diseases. Genes Dis, 2014, 1(2):199-213.
[5] Yan D, Chen D, Cool S M, et al. Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes. Arthritis Res Ther, 2011, 13(4):130.
[6] Harada S, Rodan G A. Control of osteoblast function and regulation of bone mass. Nature, 2003, 423(6937):349-355.
[7] Zou W, Izawa T, Zhu T, et al. Talin1 and Rap1 are critical for osteoclast function. Mol Cell Biol, 2013, 33(4):830-844.
[8] Lu X, Su N, Yang J, et al. Fibroblast growth factor receptor 1 regulates the differentiation and activation of osteoclasts through Erk1/2 pathway. Biochem Biophys Res Commun, 2009, 390(3):494-499.
[9] Soung D Y, Kalinowski J, Baniwal S K, et al. Runx1-mediated regulation of osteoclast differentiation and function. Mol Endocrinol, 2014, 28(4):546-553.
[10] Mirza M A, Karlsson M K, Mellstr m D, et al. Serum fibroblast growth factor-23(FGF-23) and fracture risk in elderly men. Bone Miner Res, 2011, 26(4):857-864.
[11] Wang H, Yoshiko Y, Yamamoto R, et al. Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. Bone Miner Res, 2008, 23(6):939-948.
[12] Shalhoub V, Ward S C, Sun B, et al. Fibroblast growth factor 23(FGF23) and alpha-klotho stimulate osteoblastic MC3T3.E1 cell proliferation and inhibit mineralization. Calcif Tissue Int, 2011, 89(2):140-150.
[13] Rhee Y, Bivi N, Farrow E, et al. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone, 2011, 49(4):636-643.
[14] Raimann A, Ertl D A, Helmreich M, et al. Fibroblast growth factor 23 and Klotho are present in the growth plate. Connect Tissue Res, 2013, 54(2):108-117.
[15] Wei W, Dutchak P A, Wang X, et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc Natl Acad Sci U S A, 2012, 109(8):3143-3148.
[16] Zamli Z, Robson B K, Tarlton J F, et al. Subchondral bone plate thickening precedes chondrocyte apoptosis and cartilage degradation in spontaneous animal models of osteoarthritis. Biomed Res Int, 2014, 2014(16):751-759.
[17] Im H J, Li X, Muddasani P, et al. Basic fibroblast growth factor accelerates matrix degradation via a neuro-endocrine pathway in human adult articular chondrocytes. Cell Physiol, 2008, 215(2):452-463.
[18] Ellman M B, Yan D, Ahmadinia K, et al. Fibroblast growth factor control of cartilage homeostasis. Cell Biochem, 2013, 114(4):735-742.
[19] Im H J, Muddasani P, Natarajan V, et al. Basic fibroblast growth factor stimulates matrix metalloproteinase-13 via the molecular cross-talk between the mitogen-activated protein kinases and protein kinase C delta pathways in human adult articular chondrocytes. Biol Chem, 2007, 282(15):11110-11121.
[20] Schmal H, Zwingmann J, Fehrenbach M, et al. bFGF influences human articular chondrocyte differentiation. Cytotherapy, 2007, 9(2):184-193.
[21] Sonal D. Prevention of IGF-1 and TGFbeta stimulated type Ⅱ collagen and decorin expression by bFGF and identification of IGF-1 mRNA transcripts in articular chondrocytes. Matrix Biol, 2001, 20(4):233-242.
[22] Zhang X, Ibrahimi O A, Olsen S K, et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. Biol Chem, 2006, 281(23):15694-15700.
[23] Chia S L, Sawaji Y, Burleigh A, et al. Fibroblast growth factor 2 is an intrinsic chondroprotective agent that suppresses ADAMTS-5 and delays cartilage degradation in murine osteoarthritis. Arthritis Rheum, 2009, 60(7):2019-2027.
[24] Kaul G, Cucchiarini M, Arntzen D, et al. Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2(FGF-2) in vivo. Gene Med, 2006, 8(1):100-111.
[25] Hunter D J. Pharmacologic therapy for osteoarthritis——the era of disease modification. Nat Rev Rheumatol, 2011, 7(1):13-22.
[26] Ellsworth J L, Berry J, Bukowski T, et al. Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthritis Cartilage, 2002, 10(4):308-320.
[27] Lohmander L S, Hellot S, Dreher D, et al. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis:a randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol, 2014, 66(7):1820-1831.
[28] Ohbayashi N, Shibayama M, Kurotaki Y, et al. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev, 2002, 16(7):870-879.
[29] Liu Z, Xu J, Colvin J S, et al. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev, 2002, 16(7):859-869.
[30] Shimoaka T, Ogasawara T, Yonamine A, et al. Regulation of osteoblast, chondrocyte, and osteoclast functions by fibroblast growth factor (FGF)-18 in comparison with FGF-2 and FGF-10. Biol Chem, 2002, 277(9):7493-7500.
[31] Ellsworth J L, Berry J, Bukowski T, et al. Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors. Osteoarthritis Cartilage, 2002, 10(4):308-320.
[32] Whitsett J A, Clark J C, Picard L, et al. Fibroblast growth factor 18 influences proximal programming during lung morphogenesis. Biol Chem, 2002, 277(25):22743-22749.
[33] Moore E E, Bendele A M, Thompson D L, et al. Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis Cartilage, 2005, 13(7):623-631.
[34] Mithoefer K, Williams R J, Warren R F, et al. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. Bone Joint Surg Am, 2005, 87(9):1911-1920.
[35] Power J, Hernandez P, Guehring H, et al. Intra-articular injection of rhFGF-18 improves the healing in microfracture treated chondral defects in an ovine model. Orthop Res, 2014, 32(5):669-676.
[36] Barr L, Getgood A, Guehring H, et al. The effect of recombinant human fibroblast growth factor-18 on articular cartilage following single impact load. Orthop Res, 2014, 32(7):923-927.
[37] Reinhold M I, Abe M, Kapadia R M, et al. FGF18 represses noggin expression and is induced by calcineurin. Biol Chem, 2004, 279(37):38209-38219.
[38] Valverde-Franco G, Binette J S, Li W, et al. Defects in articular cartilage metabolism and early arthritis in fibroblast growth factor receptor 3 deficient mice. Hum Mol Genet, 2006, 15(11):1783-1792.
[39] Eswarakumar V P, Monsonego-Ornan E, Pines M, et al. The Ⅲc alternative of Fgfr2 is a positive regulator of bone formation. Development, 2002, 129(16):3783-3793.
[40] Ornitz D M, Marie P J. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev, 2002, 16(12):1446-1465.
[41] Ellman M B, Yan D, Ahmadinia K, et al. Fibroblast growth factor control of cartilage homeostasis. Cell Biochem, 2013, 114(4):735-742.
[42] Ohbayashi N, Shibayama M, Kurotaki Y, et al. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev, 2002, 16(7):870-879.
[43] Liu Z, Xu J, Colvin J S, et al. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev, 2002, 16(7):859-869.
[44] Bosetti M, Leigheb M, Brooks R A, et al. Regulation of osteoblast and osteoclast functions by FGF-6. Cell Physiol, 2010, 225(2):466-471.
[45] Uchii M, Tamura T, Suda T, et al. Role of fibroblast growth factor 8(FGF8) in animal models of osteoarthritis. Arthritis Res Ther, 2008, 10(4):1-10.
[46] Hung I H, Yu K, Lavine K J, et al. FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod. Dev Biol, 2007, 307(2):300-313.

[1] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[2] 秦瑞坪, 李玲霞, 马晓玲, 席欧彦, 赵婷, 邱玲玲, 李江伟. 抗人卵泡刺激素受体多克隆抗体的制备及其对实验大鼠骨质疏松的抑制作用[J]. 中国生物工程杂志, 2017, 37(6): 9-16.
[3] 郑婕, 姜潮, 李校堃, 田海山. 成纤维细胞生长因子6(FGF6(的研究进展[J]. 中国生物工程杂志, 2017, 37(4): 110-114.
[4] 邓春平, 杨波, 梅雄, 郑赞顺, 曲伟. 重组碱性成纤维细胞生长因子游离巯基的测定分析[J]. 中国生物工程杂志, 2016, 36(6): 76-80.
[5] 吴美玉, 王海军, 程继亮, 翟凤, 李校堃, 姜潮. 成纤维细胞生长因子17研究进展[J]. 中国生物工程杂志, 2016, 36(3): 82-86.
[6] 赵央, 田海山, 李校堃, 姜潮. 成纤维细胞生长因子20研究进展[J]. 中国生物工程杂志, 2015, 35(8): 103-108.
[7] 易善勇, 杨晶, 官丽莉, 王艳芳, 黄建, 王立勇, 李海燕, 李校堃, 姜潮. 成纤维细胞生长因子9(FGF9)的研究进展[J]. 中国生物工程杂志, 2015, 35(7): 94-101.
[8] 张超, 项丽娜, 陈德培, 吕鑫鑫, 赵宜桐, 王璐瑶, 肖健, 张宏宇. 碱性成纤维细胞生长因子促进神经损伤修复的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 75-79.
[9] 黄鹏煌, 王泽, 田海山, 赵海洋, 李海燕, 李校堃. 重组人成纤维细胞生长因子8b原核表达载体的构建和纯化研究[J]. 中国生物工程杂志, 2013, 33(1): 14-19.
[10] 宋林涛, 姜潮, 李校堃. 成纤维细胞生长因子18(FGF18)的研究进展[J]. 中国生物工程杂志, 2012, 32(09): 95-100.
[11] 郭淑军, 万艳, 李丽玲, 秦丽, 陈小佳. FGFR2IIIc重组慢病毒载体的构建及其在肌原细胞L6中的表达[J]. 中国生物工程杂志, 2011, 31(5): 1-7.
[12] 郭淑军 万艳 李丽玲 秦丽 陈小佳. FGFR2IIIc重组慢病毒载体的构建及其在肌原细胞L6中的表达[J]. 中国生物工程杂志, 2011, 31(05): 0-0.
[13] 王一, 田海山, 李校堃. 成纤维细胞生长因子8(FGF8)研究进展[J]. 中国生物工程杂志, 2011, 31(01): 75-80.
[14] 林健聪 张敏静 苏志坚 陈红霞 邱壮伟 娄国锋 项琪 黄亚东. TAT-aFGF融合蛋白在大肠杆菌中的表达及其生物活性测定[J]. 中国生物工程杂志, 2010, 30(05): 11-17.
[15] 颜秋霞,吴晓萍,黄慧贤,聂昌君,聂燕芳,柯实,肖健,李校堃. bFGF特异性结合噬菌体的活性研究[J]. 中国生物工程杂志, 2009, 29(01): 23-26.