Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (4): 69-77    DOI: 10.13523/j.cb.20160411
研究报告     
镉胁迫下麻疯树转录组测序分析
苏稚喆, 王雪华, 杨华, 孙焕, 魏炜
四川大学生命科学学院 生物资源与生态环境教育部重点实验室 成都 610064
Transcriptome Analysis of Cadmium Exposed Jatropha curcas
SU Zhi-zhe, WANG Xue-hua, YANG Hua, SUN Huan, WEI Wei
School of Life Sciences and Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu 610064, China
 全文: PDF  HTML
摘要:

麻疯树是一种能适应多种恶劣环境条件的能源植物,目前关于其抵抗重金属胁迫的分子调控机理尚不清楚。从组学水平整体分析其基因表达模式对于筛选关键基因、解析镉胁迫响应调控网络和促进分子育种具有重要意义。利用Illumina测序技术对水培条件下培养的处理组(Cd 100)和对照组(CK)麻疯树幼苗叶的转录组进行高通量测序,两个数据库的测序数据经de novo组装得到50448条高质量的Unigene。两个样品中发现了2551条差异表达基因,其中539条上调基因,2012条下调基因。根据不同数据库的注释信息,发现麻疯树镉胁迫引起叶片中多种代谢途径的变化,包括碳代谢,光合作用,植物激素信号转导以及植物病原响应途径。DAVID分析显示镉胁迫引起了麻疯树叶中与离子转运相关基因的变化,导致叶片中Na离子和铁离子稳态的变化。转录因子分析发现WRKY和ZIP在镉胁迫中发挥重要作用。用qRT-PCR技术对随机挑选的5个基因进行荧光定量验证,结果与测序数据一致,证实了差异表达基因数据的有效性。深入探讨了麻疯树镉胁迫的分子机理,为进一步应用于基因工程和植物修复提供基础。

关键词: 镉胁迫转录组植物修复麻疯树    
Abstract:

Jatropha curcas, grown in many harsh environment, has been widely regarded as an excellent source of renewable biofuels, but their molecular regulation mechanism in response to cadmium (Cd) stress is not yet clear. Analyzing whole expression pattern would be very important to effectively screen the key regulation genes, to reveal molecular regulatory network of Cd stress response as well as to promote molecular breeding. Illumina sequencing technology has been applied in leaf of Cd treated Jatropha curcas (100μmol/L) and control plants(CK), 50 448 unigenes obtained from the two libraries after de novo assembly. 2 551 differentially expressed genes (DEGs) found between the two libraries, 539 up-regulated, 2 012 down-regulated. Large amounts of annotation information suggested that Cd stress in J. curcas caused change of genes involved in photosynthesis, carbon metabolism, plant hormone signal transduction and plant-pathogen interaction. DAVID annotation indicated Cd stress significantly affect the homeostasis of sodium and iron in J. curcas. Transcription factor analysis demonstrated WRKY, ZIP play vital role in Cd exposed J. curcas. QRT-PCR analysis of 5 randomly selected DEGs showed that the expression patterns were highly accordant with the results of RNA-seq. This useful information for the molecular mechanisms of Cd exposed J. curcas could be practical applied in genetic engineering and phytoremediation.

Key words: Cadmium stress    Phytoremediation    Jatropha curcas    Transcriptome
收稿日期: 2015-10-27 出版日期: 2015-12-14
ZTFLH:  Q789  
基金资助:

国家自然科学基金(31071448)、四川省应用基础研究项目(2014JY0051)资助项目

通讯作者: 魏炜     E-mail: wweixfbxw@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王雪华
苏稚喆
杨华
孙焕
魏炜

引用本文:

苏稚喆, 王雪华, 杨华, 孙焕, 魏炜. 镉胁迫下麻疯树转录组测序分析[J]. 中国生物工程杂志, 2016, 36(4): 69-77.

SU Zhi-zhe, WANG Xue-hua, YANG Hua, SUN Huan, WEI Wei. Transcriptome Analysis of Cadmium Exposed Jatropha curcas. China Biotechnology, 2016, 36(4): 69-77.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160411        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I4/69

[1] Satarug S B, Urbenjapol S. A global perspective on cadmium pollution and toxieity in non-occupationally exposed population. Toxicol Lett, 2003,137:65-83.
[2] 陈飞. 大麦镐吸收与运转机制的研究. 杭州:浙江大学,农业与生物技术学院, 2009. Chen F.Physiological and molecular mechanism of cadmium uptake and translocation in barley. Hangzhou: Zhejiang University, College of Agronomy and Biotechnology, 2009.
[3] 刘威,束文圣,蓝崇钰,等. 宝山堇菜(Viola baoshanensis)-一种新的镉超富集植物. 科学通报, 2003,48(19):2046-2049. Liu W,Shu W S,Lan C Y,et al.Viola baoshanensis—a new plant as cadmium hyperaccumulator.Chinese Science Bulletin,2003,48(19):2046-2049.
[4] 李继光,李廷强,朱恩,等. 氮对超积累植物东南景天生长和镉积累的影响. 水土保持学报, 2007,21(1):54-58. Li J G,Li T Q,Zhu E,et al. Effects of nitrogen fertilizer on growth and cadmium accumulation in hyperaccumulator of sedum alfredii hance.Journal of Soil and Water Conservation,2007,21(1):54-58.
[5] 韩璐,魏嵬,官子楸,等. Zn/Cd超富集植物天蓝遏蓝菜(Thlaapi caeruescens)中TcCalVI2基因的克隆及在酵母中的重金属耐受性分析. 中国科学院研究生院学报, 2007,24(4):465-472. Han L,Wei W,Guan Z Q, et al. A novel CAM gene from heavy metals hyperaccumulator(Thlaspi caerulescens)L.and functional analysis in yeast. Journal of the Graduate School of the Chinese Academy of Sciences,2007,24(4):465-472.
[6] 李清飞,仇荣亮. 麻疯树对镉胁迫的生理耐性及富集特征研究. 农业环境科学学报, 2012,31(1):42-47. Li Q F,Qiu R L.Cadmium physiological tolerance and accumulation characteristics of Jatropha curcas L.. Journal of Agro-Environment Science,2012,31(1):42-47.
[7] Grabherr M G, Yassour M. Full length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011,29:644-652.
[8] Leng N D, Thomson J A. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics, 2013,29(8):1035-1043.
[9] Huang D W. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009,4(1):44-57.
[10] Weber M, Trampczynska A, Clemens S, et al.Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd(2+)-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell and Environment, 2006,29:950-963.
[11] Romero-Puertas M C, Corpas F J, Rodríguez-Serrano, et al. Differential expression and regulation of antioxidative enzymes by Cd in pea plants. Journal of Plant Physiology, 2007,164:1346-1357.
[12] Tamas L, Dudikova J, Durcekova K, et al. Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. Journal of Plant Physiology, 2008,165:1193-1203.
[13] Wang Y, Gao C, Liang Y, et al. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol, 2010,167:222-230.
[14] Chmielowska-Bak J, Lefèvre I, Lutts S, et al. Short term signaling responses in roots of young soybean seedlings exposed to cadmium stress. J Plant Physiol, 2013,170:1585-1594.
[15] Wei W, Zhang Y, Han L, et al. A novel WRKY transcriptionalfactor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Reports, 2008,27:795-803.
[16] Kaya H B, Cetin O, Kaya H,et al.SNP discovery by Illuminabased transcriptome sequencing of the Olive and the genetic characterization of Turkish Olive genotypes revealed by AFLP, SSR and SNP Markers. PLoS ONE, 2013,8(9): e73674. doi:10.1371/journal.pone.0073674.
[17] Steven A, Yates M, Igor Chernukin, et al. De novo assembly of red clover transcriptome based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. BMC Genomics, 2014,15:253.
[18] Yan L,Gu Y H,Tao X,et al. Scanning of transposable elements and analyzing expression of transposase genes of Sweet Potato [Ipomoea batatas]. PLoS ONE, 2014,9(3):e90895. doi:10.1371/journal.pone.0090895.
[19] Perfus Barbeoch L, Forestier C. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J, 2002,32:539-548.
[20] Yuan L Y,Yang S G,Liu X B,et al, Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep, 2012,31:67-79.
[21] Bkgaard L, Persson D P. Acombined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump. J Biol Chem, 2010,285:31243-31252.
[22] Tiwari M, Sharma D, Dwivedi S, et al. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ, 2014,37:140-152.
[23] Sekhar K,Priyanka B,Reddy V D,et al,Metallothionein 1(CcMT1)of pigeonpea(Cajanus cajan,L.)confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana.Environ Exp Bot,2011,doi:10.1016/j.envexpbot.2011.02.017.
[24] Shukla D, Dwivedi S, Tripathi R D,et al. Expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in Escherichia coli and Arabidopsis enhances heavy metal(loid)s accumulation. Protoplasma, 2013,250:1263-1272.
[25] Takahashi R B K, Ishimaru Y, Nishizawa N K, et al. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behav, 2012,7:1799-1801.

[1] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[2] 何官榕,何碧珠,吴沙沙,石京山,陈集双,兰思仁. 多叶斑叶兰繁殖体系建立及基于转录组的发育调控途径功能基因研究[J]. 中国生物工程杂志, 2018, 38(12): 57-64.
[3] 周琳, 汪靓, 高娟, 赵权宇, 魏伟, 孙予罕. 进化与未进化小球藻响应苯酚的转录组学分析[J]. 中国生物工程杂志, 2017, 37(7): 72-79.
[4] 徐媛媛, 俞翰炳, 吴飞华, 吴晓梅. 基因组时代林木抗病分子机理研究的新进展[J]. 中国生物工程杂志, 2017, 37(6): 114-123.
[5] 梁士博, 刘佳莹, 刘杰, 杨江涛, 李集临, 张延明. NGS技术在作物基因组研究中的应用[J]. 中国生物工程杂志, 2017, 37(2): 111-120.
[6] 张敏, 田银帅, 胡晓乐, 徐莺, 陈放. 麻疯树G蛋白γ亚基JcAGG3基因的克隆及表达分析[J]. 中国生物工程杂志, 2016, 36(5): 46-52.
[7] 吕珊珊, 侯运华, 闫孟节, 钟耀华. 工业真菌高效产酶突变技术与高产机制[J]. 中国生物工程杂志, 2016, 36(3): 111-119.
[8] 周茜, 赵惠新, 李萍萍, 曾卫军, 李艳红, 葛风伟, 赵君洁, 赵和平. 独行菜种子转录组的高通量测序及分析[J]. 中国生物工程杂志, 2016, 36(1): 38-46.
[9] 敖妍, 马履一, 韩树文, 杨晓辉. 基于高通量测序的文冠果转录组分析[J]. 中国生物工程杂志, 2015, 35(7): 22-29.
[10] 李真, 刘兆雨, 徐丹, 陈婷, 孟赞, 唐勇, 彭彦. 星形胶质细胞通过CX47促进少突胶质前体细胞增殖[J]. 中国生物工程杂志, 2015, 35(12): 21-29.
[11] 邵子静, 蒋楠, 晏华立, 詹诚, 徐莺, 陈放. 麻疯树核糖体失活蛋白Curcin2的原核可溶性表达及其抗真菌活性研究[J]. 中国生物工程杂志, 2013, 33(7): 43-49.
[12] 张楠, 孙桂玲, 戴均贵, 杨艳芳, 刘洪伟, 邱德有. 银杏细胞转录组高通量测序及分析[J]. 中国生物工程杂志, 2013, 33(5): 112-119.
[13] 吕昌勇, 陈朝银, 葛锋, 刘迪秋, 孔祥君. 微生物分子生态学研究方法的新进展[J]. 中国生物工程杂志, 2012, 32(08): 111-118.
[14] 王兴春, 杨致荣, 王敏, 李玮, 李生才. 高通量测序技术及其应用[J]. 中国生物工程杂志, 2012, 32(01): 109-114.
[15] 刘新星, 陈超. 基于短序列测序数据的四倍体拟南芥转录组研究[J]. 中国生物工程杂志, 2011, 31(7): 45-53.