Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (12): 57-64    DOI: 10.13523/j.cb.20181208
技术与方法     
多叶斑叶兰繁殖体系建立及基于转录组的发育调控途径功能基因研究
何官榕1,何碧珠2,吴沙沙2,石京山3,陈集双3,**(),兰思仁2,**()
1 福建农林大学植物保护学院 福州 350002
2 福建农林大学兰科植物保护与利用国家林业与草原局重点实验室 福州 350002
3 遵义医学院基础药理教育部重点实验室特色民族药学教育部国际联合实验室 遵义 563000
Establishment of an Efficient Regeneration System in Goodyera foliosa and Comprehensive Analysis of Functionally Regulated Genes Involved in Developmental Regulatory Pathways Based on Transcriptome Analysis
HE Guan-rong1,HE Bi-zhu2,WU Sha-sha2,SHI Jing-shan3,CHEN Ji-shuang3,**(),LAN Si-ren2,**()
1 College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002,China
2 The Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization,Fujian Agriculture and Forestry University, Fuzhou 350002, China
3 Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi 563000, China
 全文: PDF(1539 KB)   HTML
摘要:

多叶斑叶兰,是兰科斑叶兰属濒危野生植物、国家二级保护植物,具有极高的观赏和药用价值。多叶斑叶兰由于分布种群小,传播扩散能力弱,自然繁殖受到极大限制。以野生多叶斑叶兰茎段作为外植体,建立高效直接的植株再生体系。结合高通量转录组测序技术与生物信息学分析技术,深入挖掘参与多叶斑叶兰器官发育过程的功能基因。结果表明, Morel+2.0 mg/L 6-BA +0.5 mg/LKT+1.0 mg/LNAA+1g/L蛋白胨+25g/L 蔗糖+7.0 g/L Agar+1.0 g/L活性炭+30 g/L 香蕉+50 g/L土豆为最佳的芽诱导培养基;Morel+3 mg/L 6-BA+0.5mg/L NAA+0.5 mg/LKT+0.01 mg/L TDZ+2g/L蛋白胨+25g/L 蔗糖+7.0 g/L Agar+1.0 g/L活性炭30g/L 香蕉+50g/L 土豆为最佳芽增殖培养基;1/2 Morel+1.0 mg/L IBA+0.1 mg/L NAA+1 g/L+花宝2 号+25g/L 蔗糖+7.0g/L Agar +1.0 g/L活性炭+1g·L-1蛋白胨为最佳的生根培养基。转录组测序分析组装获得170688个Unigene,平均长度为584 bp, N50为833 bp。17352个Unigene比对注释到NR、Swiss-Prot、KOG、GO、KEGG数据库。野生苗与组培苗差异表达Unigene GO与KEGG功能富集分析显示, Unigene主要参与调控植物激素信号转导、植物形态发育、次生代谢过程以及能量代谢过程等生物学功能。进一步分析获得511个参与植物器官发育调控相关的转录因子。成功建立了多叶斑叶兰种质资源保存与高效离体再生体系,结合高通量转录组学技术,获得全面完整的多叶斑叶兰转录组信息特征,为后期多叶斑叶兰快速扩繁、遗传转化以及功能基因鉴定、遗传发育及其调控机制研究奠定基础。

关键词: 多叶斑叶兰资源保存植株再生器官发育转录组分析    
Abstract:

Goodyera foliosa, belonged to the genus of Cymbidium, is an endangered wild and national secondary protected plant which is used as ornamental plants and for various medicinal purposes. Duo to its small distribution population and weak transmission and diffusion, the natural reproduction is greatly limited. In this study, a high efficient in vitro regeneration system was developed from stem explants of Goodyera foliosa. The functional genes involved in the morphogenesis development was deeply explored by integrating with high-throughput transcriptome sequencing and bioinformatics analysis technology. For shoot-inducing , the optical culture medium is Morel + 2.0 mg/L 6-BA + 0.5 mg/L KT+1.0 mg/L NAA + 1g/L peptone + 25g/L sucrose + 7.0 g/L Agar + 1.0 g/L active carbon + 30 g/L banana + 50 g/L potato. The optical culture medium for bud proliferation is Morel + 3 mg/L 6-BA + 0.5 mg/L NAA + 0.5 mg/L KT + 0.01 mg/L TDZ + 2g/L peptone + 25g/L sucrose + 7.0 g/L Agar + 1.0 g/L active carbon + 30g/L banana + 50g/L potato. On the rooting medium with 1/2 Morel + 1.0 mg/L IBA + 0.1 mg/L NAA + 1 g/L + Hyponex NO.2 + 25g/L sucrose + 7.0g/L Agar + 1.0 g/L active carbon + 1g/L peptone. After transcriptom sequencing and assembling, 170, 688 Unigenes were obtained. The average length and N50 length of Unigenes was 584bp and 833bp respectively. Total of 17, 352 Unigenes were completely annotated to 5 functional databases including NR, Swiss-Prot, KOG, GO and KEGG. The functional analysis of differential Unigenes was showed that hormone signal transduction, plant development, secondary metabolites and energy metabolism were significantly enriched. Moreover, 511 Unigene encoding transcription factors involved with plant organ developmental regulation were predicted. Conclusion, a comprehensive transcriptom landscape of Goodyera foliosa was described by integrating with a high efficient in vitro regeneration system and next high-throughput trancriptom sequencing. This work could provide certain reference for fast propagation, genetic transformation, functional gene mining and development mechanism research of Goodyera foliosa.

Key words: Goodyera foliosa (Lindl) Benth.    Bioresource conservation    Seedling regeneration Organ development    Transcriptome analysis
收稿日期: 2018-11-30 出版日期: 2019-01-10
ZTFLH:  Q78  
通讯作者: 陈集双,兰思仁     E-mail: biochenjs@njtech.edu.cn;lkzx@fafu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
何官榕
何碧珠
吴沙沙
石京山
陈集双
兰思仁

引用本文:

何官榕,何碧珠,吴沙沙,石京山,陈集双,兰思仁. 多叶斑叶兰繁殖体系建立及基于转录组的发育调控途径功能基因研究[J]. 中国生物工程杂志, 2018, 38(12): 57-64.

HE Guan-rong,HE Bi-zhu,WU Sha-sha,SHI Jing-shan,CHEN Ji-shuang,LAN Si-ren. Establishment of an Efficient Regeneration System in Goodyera foliosa and Comprehensive Analysis of Functionally Regulated Genes Involved in Developmental Regulatory Pathways Based on Transcriptome Analysis. China Biotechnology, 2018, 38(12): 57-64.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20181208        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I12/57

6-BA激素配比
6-BA (mg/L)
外植体数
Number of explants
增殖倍数
Proliferation rate
生长态势
Growth situation
1.0502.22±0.03c芽少,细弱,生长慢
1.5502.61±0.02b芽多,壮实,生长块
2.0503.21±0.03a芽多,壮实,生长块
2.5502.11±0.03d芽少,壮实,生长慢
3.0501.40±0.03e芽少,细弱,生长慢
表1  6-BA含量对芽诱导的影响
NAA激素配比
NAA (mg/L)
增殖倍数
Proliferation rate
生长态势
Growth situation
0.10.92±0.02e少量芽、稍绿、长势弱
0.51.61±0.02d少量芽、稍绿、长势弱
1.02.34±0.04b芽健壮、浓绿、生长正常
1.52.80±0.03a芽健壮、浓绿、生长正常
2.02.10±0.03c芽健壮、绿、生长弱
表2  NAA含量对芽增殖的影响
IBA激素配比
IBA(mg/L)
株数
Number of seedlings
生根数
Root number
平均根长
Mean length of root
0.55031.20±1.60b1.92±0.02c
1.05038.23±0.18a2.63±0.03a
1.55029.93±0.18b2.10±0.01b
2.05024.00±0.21c1.61±0.02d
2.55020.13±0.23d1.39±0.01e
表3  IBA的含量对生根的影响
图1  Unigene长度分析
图2  功能注释韦恩图
图3  差异Unigene GO功能富集结果
图4  差异Unigene KEGG功能富集结果
[1] 郎楷永, 陈心启, 罗毅波. 中国植物志, 第17 卷第1 分册. 北京: 科学出版社, 1999, 17(1): 142-143.
Lang K Y, Chen X Q, Luo Y B.Flora Reipublicae Popularis Sinicae, Tomus. Beijing: Science Press, 1999, 17(1): 1421-143.
[2] 范志刚, 孔令杰, 彭德镇, 等. 齐云山自然保护区兰科植物资源分布及其区系特点. 热带亚热带植物学报, 2011, 19(2): 159-165.
Fan Z G, Kong L J, Peng D Z, et al.Distribution and floristic characteristics of wild orchids in Qiyunshan nature reserve. Journal of Tropical and Subtropical Botany, 2011, 19(2): 159-165.
[3] 查兆兵, 唐静, 梁跃龙, 等. 多叶斑叶兰繁育系统与传生物学研究. 热带亚热带植物学报, 2016, 24(3): 333-341.
Zha Z B, Tang J, Liang Y L, et al.Breeding system and pollination biology of goodyera foliosa (Orchidaceae). Journal of Tropical and Subtropical Botany, 2011, 19(2): 159-165.
[4] 吴安湘, 金晓玲, 熊芳. 珍稀濒危植物组织培养研究进展. 西北植物学报, 2006, 26(1): 0211-0216.
Wu A X, Jin X L, Xiong L.Research advances about tissue culture of endangered plants in China. Acta Botanica Boreali-Occidentalia Sinica, 2011, 19(2): 159-165.
[5] 程明, 李厚华, 和子森, 等. 濒危植物羽叶丁香组织培养. 北方园艺, 2016, 12: 92-96.
Cheng M, Li H H, He Z S,et al.Tissue culture of endangered plant Syringa pinnatifolia. Northern Horticulture, 2016, 12: 92-96.
[6] 张艳玲, 唐澄莹, 何夫, 等. 珍稀濒危植物北碚榕的组培快繁. 植物生理学报, 2015, 51(4): 471-475.
Zhang Y L, Tang D Y, He F, et al.Tissue culture and rapid propagation of rare and endangered ficus beipeiensis. Plant Physiology Journal, 2015, 51(4): 471-475.
[7] Chukwujekwu J C, Fennell C W, Van Staden J, et al.Optimisation of the tissue culture protocol for the endangered Aloe polyphylla. South African Journal of Botany, 2002, 68(4): 424-429.
[8] 程文亮, 吴华芬, 刘南祥, 等. 绒叶斑叶兰的组织培养初探. 园艺学报, 2010, 37(增刊): 2196.
Cheng W L, Wu H F, Liu N X, et al.Preliminary Study on Tissue Culture of Goodyera velutina Maxim. Acta Horticulturae Sinica, 2010,37(Suppl): 2196.
[9] 付志惠, 李洪林, 张建霞, 等. 斑叶兰的组织培养. 植物生理学通讯, 2006, 42(3): 480.
Fu Z H, Li H L, Zhang J X, et al.Tissure Culture of Goodyera schlechtendaliana Rchh. f. Plant Physiology Journal,2006, 42(3): 480.
[10] 高丽, 李洪林, 杨波. 高斑叶兰的组织培养. 植物生理学通讯, 2007, 43(3): 505.
Gao L, Li H L, Yang B.Tissure Culture of Goodyera procera (Ker-Gawl.) Hook.Plant Physiology Journal,2007, 43(3): 505.
[11] Yang Z, Wafula E K, Honaas L A, et al.Comparative transcriptome analyses reveal core parasitism genes and suggest gene duplication and repurposing as sources of structural novelty. Molecular Biology and Evolution, 2015, 32(3): 767-790.
doi: 10.1093/molbev/msu343 pmid: 4327159
[12] Mutz K, Heilkenbrinker A, Lonne M, et al.Transcriptome analysis using next-generation sequencing. Current Opinion in Biotechnology, 2013, 24(1): 22-30.
doi: 10.1016/j.copbio.2012.09.004 pmid: 23020966
[13] Seaver S M, Gerdes S, Frelin O, et al.High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(26): 9645-9650.
doi: 10.1073/pnas.1401329111
[14] Van Dijk E, Auger H, Jaszczyszyn Y, et al.Ten years of next-generation sequencing technology. Trends in Genetics, 2014, 30(9): 418-426.
doi: 10.1016/j.tig.2014.07.001 pmid: 25108476
[15] 张超, 张茜茜, 楼楠男,等. 有机添加物对大花蕙兰原球茎及幼苗生长发育的影响. 安徽农业科学, 2009, 35(19): 8866-8868.
Zhang C, Zhang Q Q, Lou N N, et al.Effects of the organic additives on protocorm and seedling growth of Cymbidium. Journal of Anhui Agricultural Sciences, 2009, 35(19): 8866-8868.
[16] Yan L, Wang X, Liu H, et al.The genome of dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb. Molecular Plant, 2015, 8(6): 922-934.
doi: 10.1016/j.molp.2014.12.011 pmid: 25825286
[17] Huang J, Lin C, Cheng T, et al.The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation. PeerJ, 2016.
doi: 10.7717/peerj.2017 pmid: 4868593
[18] Cai J, Liu X, Vanneste K, et al.The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics, 2015, 47(1): 65-72.
[1] 赵许朋,赵晓朋,施豪,陈学梅,姜婷,刘燕. ‘贵长’猕猴桃叶片高效直接再生体系的建立 *[J]. 中国生物工程杂志, 2018, 38(10): 48-54.
[2] 欧巧明, 厚毅清, 包梅年, 胡达, 陈玉梁, 岳春玲. 中药半夏单细胞悬浮培养、胚胎发生及植株再生[J]. 中国生物工程杂志, 2012, 32(10): 39-49.
[3] 曹冠琳, 安新民, 龙萃, 薄文浩, 张志毅. 外源突变基因 AGM3 过表达对烟草开花的抑制和花器官发育的影响[J]. 中国生物工程杂志, 2011, 31(06): 49-57.
[4] 侯春喜 赵寿经 梁彦龙 王建华. 人参遗传转化研究进展[J]. 中国生物工程杂志, 2009, 29(09): 0-0.
[5] 姚庆荣,郭运玲,孔华,郭安平. 木薯体细胞胚胎发生及植株再生研究[J]. 中国生物工程杂志, 2008, 28(12): 52-56.
[6] 王维飞,韩烈保,曾会明. 高羊茅转基因研究进展[J]. 中国生物工程杂志, 2006, 26(08): 15-21.
[7] 张永彦, 徐子勤, 高丽美, 黄萱, 王健. 多年生黑麦草成熟胚再生体系的建立及基因枪转化[J]. 中国生物工程杂志, 2005, 25(3): 53-57,59.
[8] 贾彩凤, 李悦, 瞿超. 木本植物体细胞胚胎发生技术[J]. 中国生物工程杂志, 2004, 24(3): 26-29.