Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (7): 72-79    DOI: 10.13523/j.cb.20170713
研究报告     
进化与未进化小球藻响应苯酚的转录组学分析
周琳1,2, 汪靓2, 高娟1, 赵权宇2, 魏伟2, 孙予罕2
1. 上海大学生命科学学院 上海 200444;
2. 中国科学院上海高等研究院 上海 201210
Transcriptomic Analysis of Response to Phenol of Evolved and Unevolved Chlorella Strains
ZHOU Lin1,2, WANG Liang2, GAO Juan1, ZHAO Quan-yu2, WEI Wei2, SUN Yu-han2
1. School of Life Science, Shanghai University, Shanghai 200444, China;
2. Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
 全文: PDF(545 KB)   HTML
摘要: 苯酚是工业废水中典型的环境污染物。小球藻(Chlorella sp.)由于其生长快、抗逆性强,可以有效利用废水中的酚类化合物,是最有潜力的含酚废水处理藻株。但是高浓度苯酚产生的氧化压力会造成小球藻细胞的氧化损伤。通过实验室适应性进化已经得到了可以耐受500mg/L苯酚的小球藻藻株(L5)。通过无参比较转录组学数据,在基因组尺度上考察了原始小球藻(L3)和进化后小球藻对高浓度苯酚的响应差异。无参比较转录组学结果表明,进化后小球藻能够耐受并降解高浓度苯酚是多个代谢途径整体调控的结果。相比于原始小球藻,进化后小球藻在500mg/L苯酚浓度下对苯酚氧化胁迫的响应增强,主要体现在细胞信号转导、ABC转运蛋白、热休克蛋白、氮代谢和三羧酸循环(TCA)等相关的转录水平明显上调。进化后小球藻通过这些响应降低高浓度苯酚产生的氧化压力。
关键词: 氮代谢三羧酸循环苯酚小球藻转录组学    
Abstract: Phenol is a typical environmental pollutant. Chlorella sp. is potential strain for wastewater treatment because of its fast growth and strong resistance. Chlorella sp. could degrade phenol in industrial wastewater but oxidative stress induced by high concentration of phenol could cause oxidative damage in algal cells. Adaptive evolution was performed to improve the tolerance to phenol of Chlorella sp. (L5) in previous study. The response mechanism of Chlorella sp. to oxidative stress induced by high concentration phenol was explored by de novo comparative transcriptomic analysis on genome scale. It was shown that the evolved strain could tolerate and degrade phenol was related to metabolic regulations in multiple pathways. The results of de novo comparative transcriptomic analysis showed that the genes related to signal transduction, ABC transporter and heat shock protein were significantly up-regulated at 500mg/L phenol concentration compared to those in the original (L3) cells. Those genes in nitrogen metabolism and tricarboxylic acid cycle (TCA) were also upregulated. The evolved strain (L5) could reduce oxidation pressure induced by high concentration of phenol through the metabolic regulations in these metabolic pathways.
Key words: Phenol    TCA cycle    Chlorella    Nitrogen metabolism    Transcriptomics
收稿日期: 2017-01-20 出版日期: 2017-07-25
ZTFLH:  X172  
基金资助: 国家自然科学基金资助项目(21576278)
通讯作者: 赵权宇     E-mail: zhaoqy@sari.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周琳
高娟
赵权宇
孙予罕
汪靓
魏伟

引用本文:

周琳, 汪靓, 高娟, 赵权宇, 魏伟, 孙予罕. 进化与未进化小球藻响应苯酚的转录组学分析[J]. 中国生物工程杂志, 2017, 37(7): 72-79.

ZHOU Lin, WANG Liang, GAO Juan, ZHAO Quan-yu, WEI Wei, SUN Yu-han. Transcriptomic Analysis of Response to Phenol of Evolved and Unevolved Chlorella Strains. China Biotechnology, 2017, 37(7): 72-79.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170713        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I7/72

[1] Adav S S, Lee D J. Physiological characterization and interactions of isolates in phenol-degrading aerobic granules. Journal of Applied Microbiology and Biotechnology, 2008, 78(5): 899-905.
[2] Li H Q, Han H J, Du M A, et al. Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor.Bioresource Technology, 2011, 102(7): 4667-4673.
[3] Basak B, Bhunia B, Dey A. Studies on the potential use of sugarcane bagasse as carrier matrix for immobilization of Candida tropicalis PHB5 for phenol biodegradation. International Biodeterioration & Biodegradation, 2014, 93(1): 107-117.
[4] Rezvani F, Azargoshasb H, Jamialahmadi O, et al. Experimental study and CFD simulation of phenol removal by immobilization of soybean seed coat in a packed-bed bioreactor. Biochemical Engineering Journal, 2015, 101(1):32-43.
[5] Wang L B, Xue C Z, Wang L, et al. Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution. Bioresource Technology, 2016, 205(1): 264-268.
[6] Lin J. Stress responses of Acinetobacter strain Y during phenol degradation. Archives of Microbiology, 2016, 31(3): 1-11.
[7] Grabherr, M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 644-652.
[8] Gish W, States D J. Identification of protein coding regions by database similarity search. Nature Genetics, 1993, 3(3): 266-272.
[9] Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications. BMC Bioinformatics, 2009, 10(1):421.
[10] Conesa A, Gotz S, Garcia-Gomez J M, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005, 21(18):3674-3676.
[11] Xie C, Mao X, Huang J, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research, 2011, 39(52):W316-322.
[12] Hochberg Y, Ba Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 1995,57(1):289-300.
[13] Robinson M D, McCarthy D J, Smyth G K. Edge R: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1): 139-140.
[14] Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants. Trends in Plant Science, 2002,9(10):490-498.
[15] Luo Z B, He J, Polle A, et al. Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency. Biotechnology Advances, 2016, 34(6): 1131-1148.
[16] Feder M E, Hofmann G E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual Review of Physiology, 1999, 61(1): 243-282.
[17] Zhao P, Guo Y, Zhang W, et al. Neurotoxicity induced by arsenic in Gallus: Regulation of oxidative stress and heat shock protein response. Chemosphere, 2017, 97(1): 238-245.
[18] Chaurasia M K, Nizam F, Ravichandran G, et al. Molecular importance of prawn large heat shock proteins 60, 70 and 90. Fish & Shellfish Immunology, 2016, 48(9): 228-238.
[19] Jeong C B, Kim H S, Kang H M, et al. Genome-wide identification of ATP-binding cassette (ABC) transporters and conservation of their xenobiotic transporter function in the monogonont rotifer (Brachionus koreanus). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2017, 21(13): 17-26.
[20] Jeong C B, Kim D H, Kang H M, et al. Genome-wide identification of ATP-binding cassette (ABC) transporters and their roles in response to polycyclic aromatic hydrocarbons (PAHs) in the copepod Paracyclopina nana. Aquatic Toxicology, 2017, 183(1): 144-155.
[21] Ohmori M, Ohmori K, Strotmann H, et al. Inhibition of nitrate uptake by ammonia in a blue-green alga, Anabaena cylindrica. Archives of Microbiology, 1977,114(3): 225-229.
[22] Mcgriff E C, Mckinney R E. The removal of nutrients and organics by activated algae. Water Research, 1972,6(10): 1155-1164.
[23] Erdal S, Turk H. Cysteine-induced upregulation of nitrogen metabolism-related genes and enzyme activities enhance tolerance of maize seedlings to cadmium stress. Environmental and Experimental Botany, 2016, 132(23): 92-99.
[24] Santos P M, Benndorf D. Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics, 2004, 4(9): 2640-2652.
[1] 玄美娟,张晓云,高莹,高丽影,吴佳婧,马梅,王艳梅,寇航,路福平,黎明. 大肠杆菌糖酵解途径和三羧酸循环启动子的表征及其应用 *[J]. 中国生物工程杂志, 2020, 40(6): 20-30.
[2] 卫治金,李晓,王皓楠,尹永浩,郗丽君,葛保胜. 小球藻与固氮菌Mesorhizobium sp.共培养对小球藻生长和油脂积累的促进效果 *[J]. 中国生物工程杂志, 2019, 39(7): 56-64.
[3] 徐媛媛, 俞翰炳, 吴飞华, 吴晓梅. 基因组时代林木抗病分子机理研究的新进展[J]. 中国生物工程杂志, 2017, 37(6): 114-123.
[4] 吕珊珊, 侯运华, 闫孟节, 钟耀华. 工业真菌高效产酶突变技术与高产机制[J]. 中国生物工程杂志, 2016, 36(3): 111-119.
[5] 杨凯, 战景明, 高芬芳, 武宝利, 苏丽霞, 周文明, 薛向明, 郝杰, 赵阳. 小球藻用于生物柴油生产的研究进展[J]. 中国生物工程杂志, 2015, 35(11): 99-104.
[6] 汪桂林, 桂小华, 邓伟, 赵志良, 姚杰, 闫云君. “异养-胁迫”分段培养对原始小球藻生物量和油脂含量影响研究[J]. 中国生物工程杂志, 2013, 33(3): 99-104.
[7] 杨琪, 王科荣, 孔维宝, 杨红, 曹海, 张馨允. 响应面法优化普通小球藻混合营养培养基组成生产生物质[J]. 中国生物工程杂志, 2012, 32(09): 70-75.
[8] 张齐, 高振, 黄和, 梁西海, 纪晓俊, 郑洪立, 尹丰伟. 氧化铝气体分布器应用小球藻培养的研究[J]. 中国生物工程杂志, 2011, 31(03): 61-65.
[9] 郑洪立 高振 黄和 纪晓俊 白跃华 李文琦. 响应面法优化自养小球藻产生物柴油油脂[J]. 中国生物工程杂志, 2010, 30(08): 106-111.
[10] 王海英,曾晓波,郭祀远. 磁处理对小球藻生长及抗氧化系统的影响[J]. 中国生物工程杂志, 2007, 27(2): 85-89.
[11] 李力, 于波, 许平. 化石燃料生物脱有机氮研究展望[J]. 中国生物工程杂志, 2004, 24(6): 64-67.
[12] 陈颖, 李文彬, 孙勇如. null[J]. 中国生物工程杂志, 1998, 18(6): 11-15.
[13] 唐赢中, 黄利群, 严国安. 藻类产烃研究进展[J]. 中国生物工程杂志, 1997, 17(2): 22-25.
[14] 罗明典. 生物技术用于开发健脑食品[J]. 中国生物工程杂志, 1995, 15(2): 29-29.
[15] 罗明典. 世界生物技术领域取得重要进展[J]. 中国生物工程杂志, 1994, 14(3): 16-19.