Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (2): 111-120    DOI: 10.13523/j.cb.20170216
综述     
NGS技术在作物基因组研究中的应用
梁士博, 刘佳莹, 刘杰, 杨江涛, 李集临, 张延明
哈尔滨师范大学生命科学与技术学院 黑龙江省分子细胞遗传与遗传育种重点实验室 哈尔滨 150025
Next-generation Sequencing Applications for Crop Genomes
LIANG Shi-bo, LIU Jia-ying, LIU Jie, YANG Jiang-tao, LI Ji-lin, ZHANG Yan-ming
Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province/College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
 全文: PDF(469 KB)   HTML
摘要:

新一代测序技术(Next-generation sequencing,NGS)在阐明复杂和高度重复的基因组结构,DNA序列与基因组结构变异同重要农艺性状之间的关系等方面具有重要作用。从NGS系统的开发与作物基因组测序,NGS与转录组分析,NGS与全基因组关联图谱,及SNPs开发与预测育种等方面,综述了NGS技术在作物基因组研究中的应用,可为作物基因组研究提供理论基础。

关键词: 转录组作物基因组新一代测序单核苷酸多态性    
Abstract:

Next-generation sequencing technology plays an important role in elucidating the complex and highly repetitive genome structure, and the relationship between DNA sequence and genomic structural variation with the important agronomic traits. The NGS technology in crop genome research, including the development of the crop genome sequencing NGS technology, NGS and the transcriptome analysis, genome-wide association map and NGS, SNPs development and forecasting breeding, etc.were reviewed. It aims to provide a theoretical basis for crops genomic research.

Key words: Crop genomes    Next-generation sequencing    Transcription    Single nucleotide polymorphisms
收稿日期: 2016-11-25 出版日期: 2017-02-25
ZTFLH:  Q819  
基金资助:

国家重点研发计划课题(2016YFD0100102-16),黑龙江省大学生创新创业训练计划重点项目(201610231024)资助项目

通讯作者: 张延明     E-mail: blueright@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

梁士博, 刘佳莹, 刘杰, 杨江涛, 李集临, 张延明. NGS技术在作物基因组研究中的应用[J]. 中国生物工程杂志, 2017, 37(2): 111-120.

LIANG Shi-bo, LIU Jia-ying, LIU Jie, YANG Jiang-tao, LI Ji-lin, ZHANG Yan-ming. Next-generation Sequencing Applications for Crop Genomes. China Biotechnology, 2017, 37(2): 111-120.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170216        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I2/111

[1] Varshney R K, Nayak S N, May G D, et al. Next generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol, 2009, 27(9):522-530.
[2] Duran C, Eales D, Marshall D, et al. Future tools for association mapping in crop plants. Genome, 2010, 53(11):1017-1023.
[3] Edwards D, Batley J. Plant genome sequencing:applications for crop improvement. Plant Biotech, 2010, 8(1):2-9.
[4] Imelfort M, Batley J, Grimmond S, et al. Genome sequencing approaches and successes. Methods Mol Biol, 2009, 513:345-358.
[5] Imelfort M, Edwards D. De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform, 2009, 10(6):609-618.
[6] Muers M. Technology:getting Moore from DNA sequencing. Nat Rev Genet, 2011, 12(9):586-587.
[7] Lai K, Lorenc M T, Edwards D. Genomic databases for crop improvement. Agronomy, 2012, 2(1):62-73.
[8] Lee H, Lai K, Lorenc M T, et al. Bioinformatics tools and databases for analysis of next generation sequence data. Brief Funct Genomics, 2012, 11(1):12-24.
[9] Shendure J, Porreca G J, Reppas N B. Accurate multiplex polony sequencing of an evolved bacterial genome. Science, 2005, 309(5471):1728-1732.
[10] Michael L M. Sequencing technologies——the next generation. Nat Rev Genet, 2010, 11(1):31-46.
[11] Eid J, Fehr A, Gray J. Real-time DNA sequencing from single polymerase molecules. Science, 2009, 323(5910):133-138.
[12] Rothberg J M, Hinz W, Rearick T M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature, 2011, 475:348-352.
[13] Goff S A, Ricke D, Lan T H, et al. A draft sequence of the rice genome (Oryza sativa Lssp japonica). Science, 2002, 296(5565):92-100.
[14] Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296(5565):79-92.
[15] Schnable P S, Ware D, Fulton R S, et al. The B73 maize genome:complexity, diversity, and dynamics. Science, 2009, 326(5956):1112-1115.
[16] Mayer K F, Waugh R, Brown J W, et al. A physical, genetic and functional sequence assembly of the barley genome. Nature, 2012, 491(7426):711-716.
[17] Jia J, Zhao S, Kong X, et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496(4):91-95.
[18] Ling H Q, Zhao S, Liu D, et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496(4):87-90.
[19] Brenchley R, Spannagl M, Pfeifer M, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 2012,491(11):705-710.
[20] Jarrod A, Martin M, Aydin B, et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 2014, 345(6194):1251788.
[21] Schnable J C, Springer N M, Freeling M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Nat Acad Sci USA, 2011, 108(10):4069-4074.
[22] Gore M Q, Chia J M, Elshire R J. A first-generation haplotype map of maize. Science, 2009, 326(5956):1115-1117.
[23] Springer N M, Ying K, Fu Y, et al. Maize inbreds exhibit high levels of copy number variation and presence/absence variation in genome content. PLoS Genet, 2009, 10(12):1000721-1000734.
[24] Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463(1):178-183.
[25] Xu X, Pan S K, Cheng S F, et al. Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475(8):189-195.
[26] Hayward A, McLanders J, Campbell E, et al. Genomic advances will herald new insights into the Brassica:Leptosphaeria maculans pathosystem. Plant Biol, 2012, 14(5):1-10.
[27] Hayward A, Vighnesh G, Delay C, et al. Second-generation sequencing for gene discovery in the Brassicaceae. Plant Biotech J, 2012, 10(6):750-759.
[28] Raman H, Harsh R, Raman R, et al. Genetic and physical mapping of flowering time loci in oilseed rape (Brassica napus L.). Theor Appl Genet, 2012, 126(1):119-132.
[29] Paux E, Sourdille P, Salse J, et al. A physical map of the 1-gigabase bread wheat chromosome 3B. Science, 2008, 322(5898):101-104.
[30] Rabinowicz P D, Citek R, Budiman M A, et al. Differential methylation of genes and repeats in land plants. Genome Res, 2005, 15(10):1431-1440.
[31] Paux E, Roger D, Badaeva E, et al. Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J, 2006, 48(3):463-474.
[32] Berkman P J, Skarshewski A, Lorenc M T, et al. Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotech J, 2011, 9(7):768-775.
[33] Berkman P J, Skarshewski A, Manoli S, et al. Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor Appl Genet, 2011, 124(3):423-432.
[34] Wanjugi H, Coleman D, Huo N X, et al. Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat. Genome, 2009, 52(6):576-587.
[35] Li W, Zhang P, Fellers J, et al. Sequence composition, organization, and evolution of the core Triticeae genome. Plant J, 2004, 40(4):500-511.
[36] Vrána J, Kubaláková M, Šimková H, et al. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics,2000,156(4):2033-2041.
[37] Kubaláková M, Vrána J, ?íhalíková J, et al. Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 8(104):1362-1372.
[38] Laat A, Blaas J. Flow-cytometric characterization and sorting of plant chromosomes. Theor Appl Genet, 1984, 67(5):463-467.
[39] Kubalakova M, Lysak M A, Vrana J, et al. Rapid identification and determination of purity of flow-sorted plant chromosomes using C-PRINS. Cytometry, 2000, 41(2):102-108.
[40] Lee J H, Arumuganathan K, Metaphase chromosome accumulation and flow karyotypes in rice (Oryza sativa L.) root tip meristem cells. Mol Cells, 1999, 9(4):436-439.
[41] Vlacilova K, Ohri D, Vrana J, et al. Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.). Chromosom Res, 2002, 10(8):695-706.
[42] Kubaláková M, Valarik M, Bartos J, et al. Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome, 2003, 46(5):893-905.
[43] Lysak M A, Koch M A, Pecinka A, et al. Chromosome triplication found across the tribe Brassiceae. Genome Res, 2005, 15(4):516-525.
[44] Fleury D, Luo M C, Dvorak J, et al. Physical mapping of a large plant genome using global high-information-content-fingerprinting:the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS. BMC Genomics, 2010, 11(7):382.
[45] Sabot F, Guyot R, Wicker T, et al. Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations. Mol Genetics Genomics, 2005, 274(2):119-130.
[46] You F M, Huo N, Deal K R, et al. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genomics, 2011, 25(2):12-59.
[47] Nie X, Li B, Wang L, et al. Development of chromosome-arm specific microsatellite markers in Triticum aestivum (Poaceae) using NGS technology. Am J Bot, 2012, 99(9):369-371.
[48] Gill B S, Appels R, Botha-Oberholster A M, et al. A workshop report on wheat genome sequencing:international genome research on wheat consortium. Genetics, 2004, 168(2):1087-1096.
[49] Mayer K F, Taudien S, Martis M, et al. Gene content and virtual gene order of barley chromosome 1H. Plant Physiol, 2009, 151(2):496-505.
[50] Mayer K F, Martis M, Hedley P E, et al. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell, 2011, 4(23):1249-1263.
[51] Lai K, Berkman P J, Lorenc M T, et al. Wheat genome.info:an integrated database and portal for wheat genome information. Plant Cell Physiol, 2011, 53(2):2-7.
[52] Hernandez P, Martis M, Dorado G, et al. Next generation sequencing and syntenic integration of flowsorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J, 2012, 69(3):377-386.
[53] Wang L, Li P H, Brutnell T P. Exploring plant transcriptomes using ultra high-throughput sequencing. Brief Funct Genomics, 2010, 2(9):118-128.
[54] Trick M, Long Y, Meng J, et al. Single nucleotide polymorphism (SNP) discovery in the polyploidy Brassica napus using solexa transcriptome sequencing. Plant Biotech J, 2009, 7(4):334-346.
[55] Bancroft I, Stokes D R, Morgan C L, et al. Prediction of heterosis and other traits by transcriptome analysis. U.S.A., 20090300781,2009.
[56] Moxon S, Jing R, Szittya G, et al. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Research, 2008, 18(10):1602-1609.
[57] Wei B, Cai T, Zhang R, et al. Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Functional & Integrative Genomics, 2009, 9(4):499-511.
[58] Yamaguchi T, Nakayama K, Hayashi T, et al. cDNA microarray analysis of rice anther genes under chilling stress at the microsporpgenesis stage revealed two genes with DNA transposon castaway in the 5'-flanking region. Bioscience Biotechnology and Biochemistry, 2004, 68(6):1315-1323.
[59] Eckardt N A. Deep sequencing maps the maize epigenomic landscape. The Plant Cell, 2009, 21(4):1024-1026.
[60] Elling A A, Deng X W. Next-generation sequencing reveals complex relationships between the epigenome and transcriptome in maize. Plant Signaling & Behavior, 2009, 4(8):760-762.
[61] 周家蓬, 裴智勇, 陈禹保,等. 基于高通量测序的全基因组关联研究策略. 遗传,2014, 36(11):1099-1111. Zhou J P, Pei Z Y, Chen Y B, et al. Strategies of genome-wide association study based on high-throughput sequencing. Hereditas, 2014, 36(11):1099-1111.
[62] Huang X, Wei X, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42(12):961-967.
[63] Chutimanitsakun Y, Nipper R W, Cuesta-Marcos A, et al. Construction and application for QTL analysis of a restriction site. Bmc Genomics, 2011, 4(7):12-14.
[64] Elshire R J, Glaubitz J C, Sun Q, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One,2011, 6:e19379.
[65] Pfender W F, Saha M C, Johnson E A, et al. Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet, 2011, 122(8):1467-1480.
[66] Chia J M, Ware D. Sequencing for the cream of the crop. Nat Biotech, 2011, 29(2):138-139.
[67] Davey J W, Hohenlohe P A, Etter P D, et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet, 2011, 12(7):499-510.
[68] Breseghello F, Sorrells M E. Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci, 2006, 46:1323-1330.
[69] Nordborg M, Weigel D. Next-generation genetics in plants. Nature, 2008, 456(10):720-723.
[70] Atwell S, Huang Y S, Vilhjalmsson B J, et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 2010, 465(7298):627-631.
[71] Buckler E S, Holland J B, Bradbury P J, et al. The genetic architecture of maize flowering time. Science, 2009, 325(5941):714-718.
[72] Tian F, Bradbury P J, Brown P J, et al. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet, 2011, 43(2):159-162.
[73] Kump K L, Bradbury P J, Wisser R J, et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet, 2011, 43(2):163-168.
[74] Poland J A, Bradbury P J, Buckler E S, et al. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA, 2011, 108(17):6893-6898.
[75] Zhao K Y, Tung C W, Eizenga G C, et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun,2011, 2:467.
[76] Huang X H, Wei X H, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42(11):961-967.
[77] Li H, Peng Z Y, Yang X H, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet, 2013, 45(1):43-50.
[78] Yu J, Holland J B, McMullen M D, et al. Genetic design and statistical power of nested association mapping in maize. Genetics, 2008, 178(1):539-551.
[79] McMullen M D, Kresovich S, Villeda H S, et al. Genetic properties of the maize nested association mapping population. Science, 2009, 325(5941):737-740.
[80] Vignal A, Milan D, Magali S C. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol,2002,34:275-305.
[81] Brooker A J. The essence of SNPs. Gene,1999,234(2):177-186.
[82] 杜玮南,孙红霞,方福德.单核苷酸多态性的研究进展.国外医学:遗传学分册,2000,4:392-394. Du W N, Sun H X, Fang F D. The research development of single nucleotide polymorphism. International Journal of Genetics, 2000,4:392-394.
[83] Wang D G, Fan J B, Siao C J. Large scale identification, mapping, and genotyping of single nucleotide polymorphism in the human genome. Science, 1998,280:1077-1082.
[84] 杨永强,王巍杰,徐长波.单核苷酸多态性研究进展.化学与生物工程,2009, 26(8):9. Yang Y Q, Wang W J, Xu C B. The research development of single nucleotide polymorphism. Chemical Engineering and Biotechnology, 2009, 26(8):9.
[85] Imelfort M, Duran C, Batley J, et al. Discovering genetic polymorphisms in next generation sequencing data. Plant Biotech J, 2009, 7(4):312-317.
[86] Barbazuk W B, Emrich S J, Chen H D, et al. SNP discovery via 454 transcriptome sequencing. Plant J, 2007, 51(5):910-918.
[87] Duran C, Appleby N, Clark T, et al. AutoSNPdb:an annotated single nucleotide polymorphism database for crop plants. Nucl Acids Res, 2009, 10(37):951-953.
[88] Duran C, Appleby N, Vardy M, et al. Single nucleotide polymorphism discovery in barley using autoSNPdb. Plant Biotech J, 2009, 7(4):326-333.
[89] Allen A M, Barker G L, Berry S T, et al. Single nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotech J, 2011, 9(9):1086-1099.
[90] Edwards D, Wilcox S, Barrero R A, et al. Bread matters:a national initiative to profile the genetic diversity of Australian wheat. Plant Biotech J, 2012, 10(6):703-708.
[91] Lai K, Duran C, Berkman P J, et al. Single nucleotide polymorphism discovery from wheat next-generation sequence data. Plant Biotech J, 2012, 10(6):743-749.
[92] Lorenc M T, Hayashi S, Stiller J, et al. Discovery of single nucleotide polymorphisms in complex genomes using SGSautoSNP. Biology, 2012, 1(2):370-382.
[93] Hayward A, Dalton-Morgan J, Mason A, et al. SNP discovery and applications in Brassica napus. J Plant Biotech, 2012, 39(1):49-61.
[94] Bundock P C, Casu R E, Henry R J. Enrichment of genomic DNA for polymorphism detection in a non-model highly polyploid crop plant. Plant Biotech J, 2012, 10:657-667.
[95] Gholami M, Bekele W A, Schondelmaier J, et al. A tailed PCR procedure for cost-effective, two-order multiplex sequencing of candidate genes in polyploid plants. Plant Biotech J, 2012, 10(6):635-645.
[96] Liu L, Wittkop B, Stein A, et al. A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds. Theor Appl Genet, 2012, 124(8):1573-1586.
[97] Winfield M O, Wilkinson P A, Allen A M, et al. Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotech J, 2012, 10(6):733-742.
[98] Parkin I A, Gulden S M, Sharpe A G, et al. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics, 2005, 2(171):765-781.
[99] Fu Y, Springer N M, Gerhardt D J, et al. Repeat subtraction-mediated sequence capture from a complex genome. Plant J, 2010, 62(5):898-909.
[100] Pichon J P, Riviere N, Duarte J, et al. Rapeseed SNP discovery using a dedicated sequence capture protocol and 454 sequencing. Plant and Animal Genome XVIII Conference, San Diego, USA,2010.
[101] Saintenac C, Jiang D, Akhunov E D. Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol, 2011, 12(9):12-88.
[102] Snowdon R J, Luy I. Breeding oilseed rape and canola in the genomics era. Plant Breed, 2012, 131(3):351-360.
[103] Beckmann J S, Soller M. Restriction fragment length polymorphisms and genetic improvement of agricultural species. Euphytica, 1986, 35(1):111-124.
[104] Tanksley S D, Young N D, Paterson A H, et al. RFLP mapping in plant breeding:new tools for an old science. Nat Biotech, 1989, 7(3):257-264.
[105] Bernardo R. Molecular markers and selection for complex traits in plants:learning from the last 20 years. Crop Sci, 2008, 48(5):1649-1664.
[106] Xu Y, Crouch J H. Marker-assisted selection in plant breeding:from publications to practice. Crop Sci, 2008, 48(5):391-407.
[107] Meuwissen T H, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2011, 157(4):1819-1829.
[108] Hayes B J, Bowman P J, Chamberlain A J, et al. Genomic selection in dairy cattle:progress and challenges. J Dairy Sci, 2009, 92(2):433-443.
[109] Bagnato A, Rosati A. From the editors-animal selection:the genomics revolution. Anim Front, 2012, 12(1):1-2.
[110] Jannink J L, Lorenz A J, Iwata H. Genomic selection in plant breeding:from theory to practice. Brief Funct Genomics, 2010, 9(2):166-177.
[111] Riedelsheimer C, Czedik-Eysenberg A, Grieder C, et al. Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet, 2012, 44(2):217-220.
[112] Stokes D, Fraser F, Morgan C, et al. An association transcriptomics approach to the prediction of hybrid performance. Mol Breed, 2010, 26(1):91-106.
[113] David E, Jacqueline B, Rod S, et al. Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet, 2013,126(1):1-11.

[1] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[2] 何官榕,何碧珠,吴沙沙,石京山,陈集双,兰思仁. 多叶斑叶兰繁殖体系建立及基于转录组的发育调控途径功能基因研究[J]. 中国生物工程杂志, 2018, 38(12): 57-64.
[3] 周琳, 汪靓, 高娟, 赵权宇, 魏伟, 孙予罕. 进化与未进化小球藻响应苯酚的转录组学分析[J]. 中国生物工程杂志, 2017, 37(7): 72-79.
[4] 徐媛媛, 俞翰炳, 吴飞华, 吴晓梅. 基因组时代林木抗病分子机理研究的新进展[J]. 中国生物工程杂志, 2017, 37(6): 114-123.
[5] 苏稚喆, 王雪华, 杨华, 孙焕, 魏炜. 镉胁迫下麻疯树转录组测序分析[J]. 中国生物工程杂志, 2016, 36(4): 69-77.
[6] 吕珊珊, 侯运华, 闫孟节, 钟耀华. 工业真菌高效产酶突变技术与高产机制[J]. 中国生物工程杂志, 2016, 36(3): 111-119.
[7] 李达, 代鹏, 王伟, 张文涛, 汪钦, 束毅, 祝春来, 纪奇峰, 梁平, 颜真. PLCE1基因及rs2274223和rs3765524单体型的克隆与表达[J]. 中国生物工程杂志, 2016, 36(12): 1-7.
[8] 周茜, 赵惠新, 李萍萍, 曾卫军, 李艳红, 葛风伟, 赵君洁, 赵和平. 独行菜种子转录组的高通量测序及分析[J]. 中国生物工程杂志, 2016, 36(1): 38-46.
[9] 敖妍, 马履一, 韩树文, 杨晓辉. 基于高通量测序的文冠果转录组分析[J]. 中国生物工程杂志, 2015, 35(7): 22-29.
[10] 李真, 刘兆雨, 徐丹, 陈婷, 孟赞, 唐勇, 彭彦. 星形胶质细胞通过CX47促进少突胶质前体细胞增殖[J]. 中国生物工程杂志, 2015, 35(12): 21-29.
[11] 张楠, 孙桂玲, 戴均贵, 杨艳芳, 刘洪伟, 邱德有. 银杏细胞转录组高通量测序及分析[J]. 中国生物工程杂志, 2013, 33(5): 112-119.
[12] 吕昌勇, 陈朝银, 葛锋, 刘迪秋, 孔祥君. 微生物分子生态学研究方法的新进展[J]. 中国生物工程杂志, 2012, 32(08): 111-118.
[13] 王兴春, 杨致荣, 王敏, 李玮, 李生才. 高通量测序技术及其应用[J]. 中国生物工程杂志, 2012, 32(01): 109-114.
[14] 刘新星, 陈超. 基于短序列测序数据的四倍体拟南芥转录组研究[J]. 中国生物工程杂志, 2011, 31(7): 45-53.
[15] 张小燕, 左明雪, 张占军, 王忠, 李瑶. 用基因芯片检测单核苷酸多态性反应原理[J]. 中国生物工程杂志, 2005, 25(11): 57-61.