Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (9): 80-86    DOI: 10.13523/j.cb.20140912
技术与方法     
乳腺组织染色质免疫共沉淀方法的改进
任艳萍1,2, 罗婵1, 黄章虎2, 黄时海3, 石德顺1, 李湘萍1
1. 广西大学亚热带农业生物资源保护与利用国家重点实验室 南宁 530004;
2. 遵义医学院基础医学院 遵义 563003;
3. 广西大学生命科学与技术学院 南宁 530004
An Improved Method of Chromatin Immunoprecipitation for Mammary Gland
REN Yan-ping1,2, LUO Chan1, HUANG Zhang-hu2, HUANG Shi-hai3, SHI De-shun1, LI Xiang-ping1
1. State Key Laboratory of Subtropical Bioresource Conservation and Utilization, Guangxi University, Guangxi 530005, China;
2. School of Basic Medical Sciences, Zunyi Medical University, Zunyi 563003, China;
3. College of Life Science and Technology, Guangxi University, Nanning 530005, China
 全文: PDF(1268 KB)   HTML
摘要:

作为研究基因表达调控的重要方法,近年来染色质免疫共沉淀(ChIP)得到了越来越广泛的应用,但有关将乳腺组织作为ChIP材料的研究及其方法尚未见报道。采用传统的组织ChIP试剂盒处理乳腺组织时,存在样品回收率低、乳脂/乳蛋白影响杂交效率和超声积热等问题,针对以上问题对乳腺组织ChIP方法进行改进。新方法省略组织均一化步骤、用酶切-超声法代替超声法进行染色质片段化、在细胞裂解和酶切步骤间增加洗涤步骤。结果显示,与脾脏组织相比,乳腺组织不适合进行组织均一化处理。酶切-超声法比超声法更适于对乳腺组织进行染色质片段化。采用改进后的ChIP方法获得的DNA样品中,靶序列得到显著的富集,所得的DNA样品能够满足测序(ChIP-Seq)要求。结果说明,改进后的方法适用于乳腺组织染色质免疫共沉淀,并为研究乳腺组织基因表达调控奠定了基础。

关键词: 表观遗传学染色质免疫共沉淀ChIP乳腺micrococcal nuclease    
Abstract:

Chromatin Immunoprecipitation which is an important method in gene expressing regulation has been widely used recently. However, the application of ChIP for mammary gland has not yet been reported. When the traditional tissue-ChIP kit was used in mammary gland, it had some problems, including that the low sample recovery rate, hybridization efficiency disturbed by butter fat/lactoprotein and still-accumulating heat in the sonication. In order to solve these problems, in this study, the ChIP method was improved for mammary gland. In the improved protocol, the step of homogenizing the tissue was omitted, sonication was replaced by enzyme digestion-sonication, and the washing procedure was added between swelling and enzyme digestion. The results showed that the mammary gland was not suitable for homogenizing compared with the spleen. Enzyme digestion-sonication was more suitable for shearing the chromatin than sonication. Compared with the traditional CHIP method, the target sequences were significantly enriched in the DNA sample, and the DNA sample reached the demands for sequencing by using the improved method. It indicated that the improved ChIP method was suitable for mammary gland, and it would help for the research of gene expression regulation in the mammary gland.

Key words: Epigenetics    Chromatin Immunoprecipitation    ChIP    Mammary Gland    Micrococcal Nuclease
收稿日期: 2014-06-30 出版日期: 2014-09-25
ZTFLH:  Q352  
基金资助:

国家“863”计划(2011AA100607);高等学校博士学科点专项科研基金(20126401110001);广西自然科学基金(2014GXNSFAA118084)资助项目

通讯作者: 石德顺,李湘萍     E-mail: ardsshi@gxu.edu.cn;xiangpingli@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

任艳萍, 罗婵, 黄章虎, 黄时海, 石德顺, 李湘萍. 乳腺组织染色质免疫共沉淀方法的改进[J]. 中国生物工程杂志, 2014, 34(9): 80-86.

REN Yan-ping, LUO Chan, HUANG Zhang-hu, HUANG Shi-hai, SHI De-shun, LI Xiang-ping. An Improved Method of Chromatin Immunoprecipitation for Mammary Gland. China Biotechnology, 2014, 34(9): 80-86.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140912        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I9/80


[1] Rosenau C, Emery D, Kaboord B, et al. Development of a high-throughput plate-based chemiluminescent transcription factor assay. Journal of Biomolecular Screening, 2004,9(4): 334-342.

[2] Shao W, Wei H J, Qiao J Y, et al. Parallel profiling of active transcription factors using an oligonucleotide array-based transcription factor assay (OATFA). Journal of Proteome Research, 2005, 4(4): 1451-1456.

[3] Hellman L M,Fried M G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nature Protocols, 2007, 2(8): 1849-1861.

[4] Fried M G. Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis, 1989, 10(5-6): 366-376.

[5] Feng S Y, Ota K, Yamada Y, et al. A yeast one-hybrid system to detect methylation-dependent DNA-protein interactions. Biochemical and Biophysical Research Communications, 2004, 313(4): 922-925.

[6] Philp J A, Burdon T G, Watson C J. Differential activation of STATs 3 and 5 during mammary gland development. FEBS Letters, 1996, 396(1): 77-80.

[7] Orlando V, Strutt H, Paro R. Analysis of Chromatin Structure by in Vivo Formaldehyde Cross-Linking. Methods, 1997, 11(2): 205-214.

[8] Orlando V,Paro R. Mapping Polycomb-repressed domains in the bithorax complex using in vivo formaldehyde cross-linked chromatin. Cell, 1993, 75(6): 1187-1198.

[9] Jackson V. Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent. Cell, 1978, 15(3): 945-954.

[10] Robertson G, Hirst M, Bainbridge M, et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods, 2007, 4(8): 651-657.

[11] Weinmann A S, Bartley S M, Zhang T, et al. Use of chromatin immunoprecipitation to clone novel E2F target promoters. Molecular and Cellular Biology, 2001, 21(20): 6820-6832.

[12] Oh S W, Mukhopadhyay A, Dixit B L, et al. Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nature genetics, 2006, 38(2): 251-257.

[13] Filant J, Lydon J P, Spencer T E. Integrated chromatin immunoprecipitation sequencing and microarray analysis identifies FOXA2 target genes in the glands of the mouse uterus. The FASEB Journal, 2014, 28(1): 230-243.

[14] Kawazu M, Saso K, Tong K I, et al. Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development. PLoS One, 2011, 6(3): e17830.

[15] Mazumdar A, Wang R-A, Mishra S K, et al. Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biology, 2001, 3(1): 30-37.

[16] Kang S-H L, Vieira K, Bungert J. Combining chromatin immunoprecipitation and DNA footprinting: a novel method to analyze protein-DNA interactions in vivo. Nucleic acids Research, 2002, 30(10): e44-e44.

[17] Zhou Z J, Dai Z, Zhou S L, et al. HNRNPAB Induces Epithelial-Mesenchymal Transition and Promotes Metastasis of Hepatocellular Carcinoma by Transcriptionally Activating SNAIL. Cancer Research, 2014, 74(10): 2750-2762.

[18] Dahl J A,Collas P. A rapid micro chromatin immunoprecipitation assay (ChIP). Nature Protocols, 2008, 3(6): 1032-1045.

[19] Fanelli M, Amatori S, Barozzi I, et al. Chromatin immunoprecipitation and high-throughput sequencing from paraffin-embedded pathology tissue. Nature Protocols, 2011, 6(12): 1905-1919.

[1] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[2] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[3] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[4] 梁振鑫,刘芳,张玮,刘庆友,李力. 抗p185 erb B2人鼠嵌合抗体ChAb26转基因小鼠乳腺生物反应器的制备与验证 *[J]. 中国生物工程杂志, 2019, 39(8): 40-51.
[5] 先洁,覃雪,曹友德. Numb在三阴乳腺癌中抑制HDM2泛素化降解p53 *[J]. 中国生物工程杂志, 2019, 39(7): 1-7.
[6] 万群,刘梦瑶,夏菁,苟理尧,唐敏,孙恃雷,张彦. 长链非编码RNA SNHG3对人乳腺癌细胞MCF-7增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2019, 39(1): 13-20.
[7] 宋丽杰, 王丽, 杨传红, 赖晃文, 王捷. Cas9蛋白对亲骨转移人乳腺癌细胞株生物学性质和超微结构的影响[J]. 中国生物工程杂志, 2016, 36(7): 1-6.
[8] 刘静, 骆超超, 黄建国, 吴迪, 高学军, 刘玉芬. 14-3-3γ蛋白协同mTOR信号通路影响奶牛乳腺上皮细胞生理功能[J]. 中国生物工程杂志, 2015, 35(6): 32-39.
[9] 梁振鑫, 尹富强, 刘庆友, 李力. 转基因动物乳腺生物反应器相关技术及研究进展[J]. 中国生物工程杂志, 2015, 35(2): 92-98.
[10] 李玉强, 朱志图, 王巍, 李谌, 徐娜, 王钰, 李男, 孙宏治. RNA干扰NUP88基因对人乳腺癌MCF-7细胞生长及侵袭力的影响[J]. 中国生物工程杂志, 2014, 34(9): 31-39.
[11] 张斯敏, 高越, 方彧聃, 张金脉, 张敬之. 乳腺生物反应器特异高效表达载体的构建[J]. 中国生物工程杂志, 2014, 34(7): 49-55.
[12] 朱丽, 王学斌, 石昊, 俞慧清, 陆平, 徐旭俊, 成国祥. 转溶菌酶基因山羊乳腺上皮细胞的原代培养及特性分析[J]. 中国生物工程杂志, 2014, 34(10): 28-34.
[13] 闫亚彬, 蔡勤, 蔡琳琳, 龚秀丽, 朱怡文, 管翌华, 黄英. 比较牛催乳素与生长激素对外源基因表达的影响[J]. 中国生物工程杂志, 2013, 33(8): 91-97.
[14] 李菲菲, 方静, 马琼, 付辉, 毛建平. 龙脑液导致癌细胞凋亡的实验研究[J]. 中国生物工程杂志, 2013, 33(5): 22-27.
[15] 吴俊, 严新, 邵荣, 段菁华. 阿霉素-姜黄素聚氰基丙烯酸正丁酯复方纳米粒的研制及逆转MCF-7/ADR细胞多药耐药的研究[J]. 中国生物工程杂志, 2013, 33(5): 35-43.