Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (9): 57-65    DOI: 10.13523/j.cb.20150909
综述     
miRNA在肿瘤分子诊断和治疗中的研究进展
梁高峰1,2, 何向峰1, 陈宝安1
1 东南大学医学院附属中大医院 南京 210092;
2 河南科技大学医学技术与工程学院 洛阳 471003
Progress in the Research of miRNA on Tumor Molecular Diagnosis and Therapy
LIANG Gao-feng1,2, HE Xiang-feng1, CHEN Bao-an1
1 Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210092, China;
2 Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471003, China
 全文: PDF(490 KB)   HTML
摘要:

微小RNA(miRNA)是一类真核生物内源性、长18~25个核苷酸的小分子单链RNA,能够通过与靶mRNA特异性的碱基互补配对引起靶mRNA的降解或者翻译抑制,miRNA调节的紊乱将对细胞产生重要的影响.在肿瘤中,抑癌性miRNA的缺失会增加其靶向致癌基因的表达,而致癌miRNA(被称为oncomirs)的升高能够降低其靶向肿瘤抑制基因的表达.这一认识使得应用靶向致癌性miRNA与恢复抑癌性miRNA的功能来治疗肿瘤成为可能.随着临床研究的不断深入,miRNA不断为肿瘤分子诊断和治疗提供新的思路和治疗手段.

关键词: 微小RNA肿瘤分子诊断治疗    
Abstract:

miRNA are a class of endogenous single-stranded small molecule RNA within eukaryotes, about 18~26 nucleotide, which can trigger the target mRNA degradation or translational repression of target mRNA through specific complementary base pairing. miRNA dysregulation can have profound cellular consequences. In cancer, the loss of tumour-suppressive miRNAs enhances the expression of target oncogenes, whereas increased expression of oncogenic miRNAs (known as oncomirs) can repress target tumour suppressor genes. This realization has resulted in a promotion to comprehend the feasibility of targeting oncogenic miRNAs and restoring tumour-suppressive miRNAs for cancer therapy. In conclusion, with the deepening of clinical studies in miRNA,new ideas and methods are provided for molecular diagnostics and cancer therapy.

Key words: miRNA    Tumor    Molecular diagnosis    Therapy
收稿日期: 2015-02-11 出版日期: 2015-09-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金资助项目(81370673,U1404824)

通讯作者: 陈宝安     E-mail: cba8888@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

梁高峰, 何向峰, 陈宝安. miRNA在肿瘤分子诊断和治疗中的研究进展[J]. 中国生物工程杂志, 2015, 35(9): 57-65.

LIANG Gao-feng, HE Xiang-feng, CHEN Bao-an. Progress in the Research of miRNA on Tumor Molecular Diagnosis and Therapy. China Biotechnology, 2015, 35(9): 57-65.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150909        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I9/57


[1] Denli A M, Tops B J, Plasterk R A, et al. Processing of primary microRNAs by the Microprocessor complex. Nature, 2004,432(7014):231-235.

[2] Ruvkun G. Molecular biology. Glimpses of a tiny RNA world. Science, 2001,294(5543):797-799.

[3] Sokilde R, Vincent M, Moller A K, et al. Efficient Identification of miRNAs for classification of tumor origin. Journal of Molecular Diagnostics, 2014,16(1):106-115.

[4] Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 2007,9(6):654-662.

[5] Bianchi F, Nicassio F, Marzi M, et al. A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer. Embo Molecular Medicine, 2011,3(8):495-503.

[6] Heneghan H M, Miller N, Lowery A J, et al. Circulating microRNAs as Novel Minimally Invasive Biomarkers for Breast Cancer. Annals of Surgery, 2010,251(3):499-505.

[7] Asaga S, Kuo C, Nguyen T, et al. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clinical Chemistry, 2011,57(1):84-91.

[8] 胡俊庭, 鲍蕴文, 白艳, 等. 肺癌患者血清microRNA-21表达临床意义探讨. 中华肿瘤防治杂志, 2014,21(1):39-42. Hu J T, Bao Y W, Bai Y, et al.Serum microRNA-21 expression and its clinical significance in patients with lung cancer.Chinese Journal of Cancer Prevention and Treatment,2014,21(1):39-42.

[9] 叶敏华,叶鹏辉,张伟珠,等. 唾液与血浆微小RNA-21对早期食管癌的诊断价值. 南方医科大学学报, 2014,34(6):885-889. Ye M H, Ye P H, Zhang W Z, et al.Diagnostic values of salivary versus and plasma microRNA-21 for early esophageal cancer. Journal of Southern Medical University,2014,34(6):885-889.

[10] Huang Z, Huang D, Ni S, et al. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. International Journal of Cancer, 2010,127(1):118-126.

[11] Chen X, Hu Z, Wang W, et al. Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis. International Journal of Cancer, 2012,130(7):1620-1628.

[12] Kota J, Chivukula R R, O'donnell K A, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 2009,137(6):1005-1017.

[13] Ji J, Shi J, Budhu A,et al. MicroRNA expression, survival, and response to interferon in liver cancer. New England Journal of Medicine, 2009,361(15):1437-1447.

[14] Liu R, Zhang C, Hu Z, et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. European Journal of Cancer, 2011,47(5):784-791.

[15] Chen Z H, Zhang G L, Li H R, et al. A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate, 2012,72(13):1443-1452.

[16] Zhang C, Wang C, Chen X, et al. Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clinical Chemistry, 2010,56(12):1871-1879.

[17] Porter-Gill P, Fu Y P, Kaushiva A, et al. Detection of bladder, breast and prostate cancer using serum and tissue miRNA profiling. Genome Biology, 2011,12(10):12-13.

[18] Suryawanshi S, Vlad A M, Lin H M,et al. Plasma microRNAs as novel biomarkers for endometriosis and endometriosis-associated ovarian cancer. Clinical Cancer Research, 2013,19(5):1213-1224.

[19] Zeng X, Xiang J, Wu M, et al. Circulating miR-17, miR-20a, miR-29c, and miR-223 combined as non-invasive biomarkers in nasopharyngeal carcinoma. Plos One, 2012,7(10):102-111.

[20] Costinean S, Sandhu S K, Pedersen I M,et al. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of E mu-MiR-155 transgenic mice. Blood, 2009,114(7):1374-1382.

[21] Thai T H, Calado D P, Casola S, et al. Regulation of the germinal center response by microRNA-155. Science, 2007,316(5824):604-608.

[22] Rodriguez A, Vigorito E, Clare S,et al. Requirement of bic/microRNA-155 for normal immune function. Science, 2007,316(5824):608-611.

[23] O'Connell R M, Kahn D, Gibson W S J, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity, 2010,33(4):607-619.

[24] Medina P P, Nolde M, Slack F J. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature, 2010,467(7311):86-99.

[25] Hatley M E, Patrick D M, Garcia M R, et al. Modulation of K-Ras-dependent lung tumorigenesis by microRNA-21. Cancer Cell, 2010,18(3):282-293.

[26] Ma X, Kumar M, Choudhury S N, et al. Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(25):10144-10149.

[27] Santanam U, Zanesi N, Efanov A, et al. Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(27):12210-12215.

[28] Xiao C, Srinivasan L, Calado D P, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunology, 2008,9(4):405-414.

[29] Ventura A, Young A G, Winslow M M,et al. Targeted deletion reveals essential and overlapping functions of the miR-17 similar to 92 family of miRNA clusters. Cell, 2008,132(5):875-886.

[30] Salerno E, Scaglione B J, Coffman F D, et al. Correcting miR-15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity. Molecular Cancer Therapeutics, 2009,8(9):2684-2692.

[31] Klein U, Lia M, Crespo M, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and Its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 2010,17(1):28-40.

[32] Boldin M P, Taganov K D, Rao D S,et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. Journal of Experimental Medicine, 2011,208(6):1189-1201.

[33] Kumar M S, Pester R E, Chen C Y,et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes & Development, 2009,23(23):2700-2704.

[34] Lambertz I, Nittner D, Mestdagh P, et al. Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo. Cell Death and Differentiation, 2010,17(4):633-641.

[35] Roush S, Slack F J. The let-7 family of microRNAs. Trends in Cell Biology, 2008,18(10):505-516.

[36] Trang P, Wiggins J F, Daige C L, et al. Systemic delivery of tumor suppressor microrna mimics using a neutral lipid emulsion inhibits lung tumors in mice. Molecular Therapy, 2011, 19(6): 1116-1122.

[37] Trang P, Medina P P, Wiggins J F,et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene, 2010,29(11):1580-1587.

[38] Lee S T, Chu K, Oh H J, et al. Let-7 microRNA inhibits the proliferation of human glioblastoma cells. Journal of Neuro-Oncology, 2011,102(1):19-24.

[39] Kent O A, Chivukula R R, Mullendore M, et al. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes & Development, 2010,24(24):2754-2759.

[40] Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death and Differentiation, 2010,17(2):193-199.

[41] Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nature Reviews Cancer, 2009,9(10):701-713.

[42] Misso G, Di Martino M T, De Rosa G, et al. Mir-34: A new weapon against cancer. Molecular Therapy-Nucleic Acids, 2014, 3(3): 195-206.

[43] Lanford R E, Hildebrandt-Eriksen E S, Petri A, et al. Therapeutic silencing of microrna-122 in primates with chronic hepatitis C virus infection. Science, 2010, 327(5962): 198-201.

[44] Su J, Baigude H, Mccarroll J, et al. Silencing microrna by interfering nanoparticles in mice. Nucleic Acids Research, 2011, 39(6):194-203.

[45] Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of micrornas in vivo with 'Antagomirs'. Nature, 2005, 438(7068): 685-689.

[46] Ma L, Reinhardt F, Pan E, et al. Therapeutic silencing of mir-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnology, 2010, 28(4): 341-357.

[47] Jeon H M, Sohn Y W, Oh S Y, et al. Id4 imparts chemoresistance and cancer stemness to glioma cells by derepressing mir-9*-mediated suppression of Sox2. Cancer Research, 2011, 71(9): 3410-3421.

[48] Cittelly D M, Das P M, Salvo V A, et al. Oncogenic Her2 delta 16 suppresses mir-15a/16 and deregulates Bcl-2 to promote endocrine resistance of breast tumors. Carcinogenesis, 2010, 31(12): 2049-2057.

[49] Cittelly D M, Das P M, Spoelstra N S, et al. Downregulation of mir-342 is associated with tamoxifen resistant breast tumors. Molecular Cancer, 2010, 9(4): 317-326.

[50] Miller T E, Ghoshal K, Ramaswamy B, et al. Microrna-221/222 confers tamoxifen resistance in breast cancer by targeting p27kip1. Journal of Biological Chemistry, 2008, 283(44): 29897-29903.

[51] Cao M, Seike M, Soeno C, et al. Mir-23a regulates Tgf-beta-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. International Journal of Oncology, 2012, 41(3): 869-875.

[52] Han S Y, Zhao M B, Zhuang G B, et al. Marsdenia tenacissima extract restored gefitinib sensitivity in resistant non-small cell lung cancer cells. Lung Cancer, 2012, 75(1): 30-37.

[53] Kastl L, Brown ISchofield A C. Mirna-34a Is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Research and Treatment, 2012, 131(2): 445-454.

[54] Sebio A, Pare L, Paez D, et al. The Lcs6 polymorphism in the binding site of let-7 microrna to the kras 3'-untranslated region: its role in the efficacy of anti-egfr-based therapy in metastatic colorectal cancer patients. Pharmacogenetics and Genomics, 2013, 23(3): 142-147.

[55] Chen F, Zhu H H, Zhou L F,et al. Inhibition of c-FLI Pexpression by miR-512-3 Pcontributes to Taxol-induced apoptosis in hepatocellular carcinoma cells. Oncology Reports, 2010,23(5):1457-1462.

[56] Shaham L, Binder V, Gefen N,et al. MiR-125 in normal and malignant hematopoiesis. Leukemia, 2012,26(9):2011-2018.

[57] Holleman A, Chung I, Olsen R R,et al. miR-135a contributes to paclitaxel resistance in tumor cells both in vitro and in vivo. Oncogene, 2011,30(43):4386-4398.

[58] Menendez P, Villarejo P, Padilla D,et al. Implications of the histological determination of microRNAs in the screening, diagnosis and prognosis of colorectal cancer. Journal of Surgical Oncology, 2013,108(1):70-73.

[59] Valeri N, Gasparini P, Braconi C, et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proceedings of the National Academy of Sciences of the United States of America, 2010,107(49):21098-21103.

[60] Hong L, Han Y, Zhang Y,et al. MicroRNA-21: a therapeutic target for reversing drug resistance in cancer. Expert Opinion on Therapeutic Targets, 2013,17(9):1073-1080.

[61] 方楚玲,郭琳琅. miRNA对肺癌化疗耐药调控研究进展. 中华肿瘤防治杂志, 2014(1):72-76. Fang C L, Guo L L.Research situation of miRNAs in regulating chemotherapy resistance of lung cancer. Chinese Journal of Cancer Prevention and Treatment, 2014(1):72-76.

[62] Connelly C M, Uprety R, Hemphill J, et al. Spatiotemporal control of microRNA function using light-activated antagomirs. Molecular Biosystems, 2012,8(11):2987-2993.

[63] Tiram G, Scomparin A, Ofek P, et al. Interfering cancer with polymeric siRNA nanomedicines. Journal of Biomedical Nanotechnology, 2014,10(1):50-66.

[64] Esquela-Kerscher A, Trang P, Wiggins J F, et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle, 2008,7(6):759-764.

[65] Pramanik D, Campbell N R, Karikari C, et al. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Molecular Cancer Therapeutics, 2011,10(8):1470-1480.

[66] Liu C, Kelnar K, Liu B, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nature Medicine, 2011,17(2):211-U105.

[67] Zhang Y, Wang Z, Gemeinhart R A. Progress in microRNA delivery. Journal of Controlled Release, 2013,172(3):962-974.

[68] Arroyo J.D, Chevillet J R, Kroh E M, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(12):5003-5008.

[69] Grimm D, Wang L, Lee J S, et al. Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. Journal of Clinical Investigation, 2010,120(9):3106-3119.

[1] 赵梦泽,李凤智,王鹏银,李剑,徐寒梅. PD-L1和VEGF双靶点联合阻断治疗的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 71-77.
[2] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[3] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[4] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[5] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[6] 唐德平,邢梦洁,宋文涛,姚慧慧,毛爱红. microRNA治疗在癌症及其他疾病中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 64-73.
[7] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[8] 杨威,宋方祥,王帅,张黎,王红霞,李焱. 药物输送系统中Janus纳米粒子的制备及应用 *[J]. 中国生物工程杂志, 2020, 40(7): 70-81.
[9] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[10] 张保惠,熊华龙,张天英,袁权. 基于水疱性口炎病毒(VSV)的溶瘤病毒研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 53-62.
[11] 毛开云,赵若春,王跃,范月蕾,江洪波. 全球细胞治疗CMO/CDMO行业发展态势分析 *[J]. 中国生物工程杂志, 2020, 40(6): 106-112.
[12] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[13] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[14] 钱颖,钱晨,白晓庆,王晶晶. 免疫佐剂在肿瘤免疫疗法中的应用进展 *[J]. 中国生物工程杂志, 2020, 40(3): 96-103.
[15] 李玉,张晓. 日本细胞治疗监管双轨制的经验及启示 *[J]. 中国生物工程杂志, 2020, 40(1-2): 174-179.