Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (1): 61-66    DOI: 10.13523/j.cb.20150109
技术与方法     
基于启动子和宿主改造的酿酒酵母表达系统优化研究
张旭, 王晶晶, 刘建平
复旦大学生命科学学院 遗传工程国家重点实验室 上海 200433
The Optimization of Saccharomyces cerevisiae Expression System by Mutagenesis of Promoter and Host Strain
ZHANG Xu, WANG Jing-jing, LIU Jian-ping
State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
 全文: PDF(641 KB)   HTML
摘要:

生物医药领域中一套高效表达系统对于重组蛋白的生产至关重要。酿酒酵母作为一种食品级真核微生物,具有繁殖迅速、培养简单、遗传操作便捷等特点,是生产重组蛋白较理想的表达系统之一。对实验室已有的pHR酿酒酵母表达系统进行优化。分别通过易错PCR技术和菌株诱变技术对酿酒酵母启动子PTEF和宿主酿酒酵母Y16进行突变改造,经筛选、鉴定获得表达性能提高的启动子PTEFV1和酿酒酵母Y16-E14、Y16-E19。随后,利用启动子PTEFV1构建以Y16-E14为宿主的pHR-N酿酒酵母表达系统,以绿色荧光蛋白和人血清白蛋白为对象,比较表达系统改造前后性能变化。结果显示pHR-N酿酒酵母表达系统无论胞内表达绿色荧光蛋白还是分泌表达人血清白蛋白的能力均较改造前明显提高。pHR-N系统为获得更多具有重要应用价值的重组蛋白提供了有利的工具。

关键词: 酿酒酵母表达系统启动子宿主优化改造    
Abstract:

An expression system with high efficiency is very important for recombinant proteins production in biopharmaceutical field. Saccharomyces cerevisiae is a food-graded eukayotic organism. The features of short generation time, simple culture condition and well-characterized manipulation techniques make yeast S. cerevisiae an attractive cell factory for production of heterologous protein. Here, for the purpose to improve the efficiency of pHR expression system which was constructed in our lab previously., the promoter of pHR expression vector (PTEF) and host strain Y16 were modified by the way of error-prone PCR and mutagenesis respectively. After several rounds of screening, a mutant PTEFv1 with higher efficiency than the mother promoter PTEF was obtained. Two modified yeast strains Y16-E14 and Y16-E19 were identified with higher productivity of heterologous protein than yeast Y16. Then PTEFv1 and yeast Y16-E14 were used to construct the novel pHR-N expression system. To evaluate the ability of pHR-N expression system, yeast green fluorescent protein (GFP) and human serum albumin (HSA) were chosed to be expressed intracellularly and extracellularly respectively. The results showed that pHR-N system had higher ability to produce either intracellular GFP or extracellular HSA than pHR system. The pHR-N yeast expression system provides a valuable resource for future application in recombinant protein production.

Key words: Saccharomyces cerevisiae    Expression system    Promoter    Host strain optimization
收稿日期: 2014-10-21 出版日期: 2015-01-25
ZTFLH:  Q815  
基金资助:

国家"863" 计划资助项目(2007AA02Z107)

通讯作者: 刘建平     E-mail: jpliu@fudan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张旭, 王晶晶, 刘建平. 基于启动子和宿主改造的酿酒酵母表达系统优化研究[J]. 中国生物工程杂志, 2015, 35(1): 61-66.

ZHANG Xu, WANG Jing-jing, LIU Jian-ping. The Optimization of Saccharomyces cerevisiae Expression System by Mutagenesis of Promoter and Host Strain. China Biotechnology, 2015, 35(1): 61-66.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150109        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I1/61


[1] McAleer W J, Buynak E B, Maigetter R Z, et al. Human hepatitis B vaccine fromrecombinant yeast. Nature, 1984, 307:178-180.

[2] Celik E, Calik P. Production of recombinant proteins by yeast cells. Biotechnology Advances, 2012, 30:1108-1118.

[3] Miura S, Dwiarti L, Arimura T, et al. Enhanced production of L- lactic acid by ammonia-tolerant mutant strain Rhizopus sp. MK-96-1196. J Biosci Bioeng, 2004, 97(1):19-23.

[4] 张丽杰,邸进申,全学军等。诱变选育高产海藻糖的酵母菌株. 生物技术,2005,15(1):31-33. Zhang L J, Di J S, Quan X J, et al. Breeding of high trehalose producing mutants of Saccharomyces cerevisiae. Biotechnology, 2005,15(1):31-33.

[5] Alper H, Fischer C,Nevoigt E, et al. Tuning genetic control through promoter engineering. PNAS, 2005, 102 (36):12678-12683.

[6] Partow S, Siewers V, Sara Bjørn S, et al. Characterization of different promoters for designinga new expression vector in Saccharomyces cerevisiae. Yeast, 2010; 27: 955-964.

[7] Blount B A, Weenink T, Ellis T. Construction of synthetic regulatory networks in yeast. FEBS Letters, 2012, 586:2112-2121.

[8] Yu J, Jian J X, Ji W M, et al. Glucose-free fructose production from Jerusalem artichoke using a recombinant inulinase-secreting Saccharomyces cerevisiae strain. Biotechnol Lett, 2011, 33:147-152.

[9] 江佳稀,张宇飞,沈洪波等. 表达结核杆菌抗原的重组酿酒酵母免疫小鼠研究. 复旦学报(自然科学版), 2011,50(2):192-197. Jiang J X, Zhang Y F, Shen H B, et al. Induction of antigen-specific humoral immune response by subcutaneous vaccination with Saccharomyces cerevisiae expressing Mycobacterium tuberculosis antigen. Joural of Fudan University (Natural Science), 2011, 50(2):192-197.

[10] Gietz R D, Schiestl R H. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc, 2007, 2(1):1-4.

[11] Cline J, Braman J C, Hogrefe H H. PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res, 1996, 24: 3546-3551.

[12] Chaput J C, Woodbury N W, Stearns L A, et al. Creating protein biocatalysts as tools for future industrial applications. Expert Opin Biol Ther, 2008, 8: 1087-1098.

[13] Burns P A, Allen F L, Glickman B W. DNA sequence analysis of mutagenicity and site specificity of ethyl methanesulfonate in Uvr+ and UvrB- strains of E.coli.Geneties, 1986,113:811- 819.

[14] 程明,崔承彬,李长伟等. 化学诱变技术在微生物育种研究中的应用. 国际药学研究杂志. 2009, 36(6):412-417. Cheng M, Cui C B, Li C W, et al. Chemical mutation technique applied in microorganism breeding. Journal of International Pharmaceutical Research, 2009, 36(6):412-417.

[15] Guarente L. Yeast promoters and lac-Z fusions designed to study expression of cloned genes in yeast. Methods Enzymol, 1983, 101:181-191.

[16] Fashena S J, Serebriiskii IGand Golemis E A. The continued evolution of hybrid screening approaches in yeast: How to outwit different baits with different preys. Gene, 2000, 250: 1-14.

[17] Menzel R. A microtiter plate-based system for the semiautomated growth and assay of bacterial cells for beta-galactosidase activity.Anal Biochem, 1989, 181:40-50.

[18] Böer E, Steinborn G, Kunze G, et al. Yeast expression platforms. Appl Microbiol Biotechnol, 2007, 77:513-523.

[1] 袁博鑫,吴昊,闫春晓,路娟娥,魏振平,乔建军,阮海华. 病原细菌效应蛋白靶向宿主细胞核研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 81-90.
[2] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[3] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[4] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[5] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[6] 卜恺璇,周翠霞,路福平,朱传合. 细菌转录起始调控机制*[J]. 中国生物工程杂志, 2021, 41(11): 89-99.
[7] 朱亚鑫, 段艳婷, 高宇豪, 王籍阅, 张晓梅, 张晓娟, 徐国强, 史劲松, 许正宏. 不同D/L单体比γ-聚谷氨酸的合成与调控[J]. 中国生物工程杂志, 2021, 41(1): 1-11.
[8] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[9] 玄美娟,张晓云,高莹,高丽影,吴佳婧,马梅,王艳梅,寇航,路福平,黎明. 大肠杆菌糖酵解途径和三羧酸循环启动子的表征及其应用 *[J]. 中国生物工程杂志, 2020, 40(6): 20-30.
[10] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[11] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[12] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[13] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[14] 齐家龙, 高瑞雨, 靳输梅, 高福兰, 杨旭, 马雁冰, 刘存宝. 水痘-带状疱疹病毒糖蛋白E在昆虫细胞中的表达、鉴定及免疫原性分析 *[J]. 中国生物工程杂志, 2019, 39(8): 17-24.
[15] 安明晖,田文,韩晓旭,尚红. 表达HIV单链抗体的重组乳酸杆菌的构建及表型分析 *[J]. 中国生物工程杂志, 2019, 39(10): 1-8.