Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (12): 118-128    DOI: 10.13523/j.cb.20141217
综述     
丁醇产生菌育种研究进展
林俊涵, 邱东凤, 林晨
福建生物工程职业技术学院 福州 350002
Development in Breeding of Butanol Producing Strain
LIN Jun-han, QIU Dong-feng, LIN Chen
Fujian Vocational College of Bioengineering, Fuzhou 350002, China
 全文: PDF(903 KB)   HTML
摘要:

生物丁醇产业因发酵法的产量、产率和比例低等原因受到限制。菌种改良是解决问题的一个重要和根本的策略。诱变育种仍然是工业育种的主要方法,复合诱变和理性化筛选更有效。基因工程育种对丙酮丁醇梭菌和大肠杆菌丁醇合成途径进行改造和构建优化,还可改造途径外影响合成的其它基因,以获得高产菌株,发展最为迅猛,但效果仍低于诱变育种。今后的菌种改良方向仍为提高产量和比例。

关键词: 丁醇丙酮丁醇梭菌诱变育种基因工程育种    
Abstract:

The biobutanol industry is limited by yield, productivity and low proportion in acetone-butanol-ethanol fermentation. Strain improvement is considered as an important and basic strategy to solve the problems. In industry, many high-yield strains were obtained mainly by mutation breeding, in which compound mutation and rational screening are more efficient strategies. Genetic engineering breeding has achieved rapid development. The high-yield strains could be obtained by modification of the butanol pathway and other genes which inhibit butanol synthesis in Clostridium acetobutylicum, as well as construction and optimiztion of the butanol pathway in E. coli. However, the effects were still lower than those of mutation breeding. The most important strategy would be still to increase yield and proportion of butanol in the following strain improvement.

Key words: Butanol    Clostridium acetobutylicum    Mutation breeding    Genetic engineering breeding
收稿日期: 2014-08-12 出版日期: 2014-12-25
ZTFLH:  Q819  
通讯作者: 林俊涵     E-mail: ljh047@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

林俊涵, 邱东凤, 林晨. 丁醇产生菌育种研究进展[J]. 中国生物工程杂志, 2014, 34(12): 118-128.

LIN Jun-han, QIU Dong-feng, LIN Chen. Development in Breeding of Butanol Producing Strain. China Biotechnology, 2014, 34(12): 118-128.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20141217        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I12/118


[1] 黄格省, 李振宇, 张兰波, 等. 生物丁醇的性能优势及技术进展. 石化技术与应用, 2012, 30(3): 254-259. Huang G S, Li Z Y, Zhang L B, et al. Performance advantage and technology progress in biobutanol. Petrochemical Technology&Application, 2012, 30(3): 254-259.

[2] 苏会波, 李凡, 彭超, 等. 新型生物能源丁醇的研究进展和市场现状. 生物质化学工程, 2014, 48(1): 37-43. Su H B, Li F, Peng C, et al. Research progress and market status of novel bioenergy butanol. Biomass Chemical Engineering, 2014, 48(1): 37-43.

[3] 杜小元,杨世东. 丁辛醇的生产现状与供需分析. 现代化工, 2014, 34(4): 4-8. Du X Y, Yang S D. Production status of n-butanol and octanol and their market analysis. Modern Chemical Industry, 2014, 34(4): 4-8.

[4] 顾阳, 蒋宇, 吴辉, 等. 生物丁醇制造技术现状和展望. 生物工程学报, 2010, 26(7): 914-923. Gu Y, Jiang Y, Wu H, et al. Current status and prospects of biobutanol manufacturing technology. Chinese Journal of Biotechnology, 2010, 26(7): 914-923.

[5] 靳孝庆, 王桂兰,何冰芳. 丙酮丁醇发酵的研究进展及其高产策略. 化工进展, 2007, 26(12): 1727-1732. Jin X Q, Wang G L,He B F. Research progress and high yield strategy of acetone-butanol fermentation. Chemical Industry and Engineering Progress, 2007, 26(12): 1727-1732.

[6] Chen C K,Blaschek H P. Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101. Applied Microbiology and Biotechnology, 1999, 52(2): 170-173.

[7] Yang S T,Zhao J B. Adaptive engineering of Clostridium for increased butanol production. US, Patent No. 8450093, May 28, 2013.

[8] 孙晓杰. 丙酮丁醇梭菌诱变育种及丁醇发酵研究. 天津:天津大学, 2009. Sun X J. Study on the mutation breeding of Clostridium acetobutylicum ATCC 824 and butanol fermentation. Tianjin:Tianjin University, 2009.

[9] Luo W, Liu X B, Gu Q Y, et al. Enhancement of butanol tolerance and butanol yield in Clostridium acetobutylicum mutant NT642 obtained by nitrogen ion beam implantation. Journal of microbiology, 2012, 50(6): 1024-1028.

[10] 曹畅. 高产丁醇菌株的筛选、诱变及发酵工艺研究. 长春:吉林农业大学, 2012. Cao C. Research on screening, mutation of high-yielding butanol strains and fermentation technology.Changchun:Jilin Agricultural University, 2012.

[11] 毛绍名,章怀云. 丙酮丁醇梭菌高耐丁醇突变株的选育及其生理特性的研究. 中南林业科技大学学报, 2012, 32(8): 103-111. Mao S M,Zhang H Y. Study on screening the butanol-tolerant mutant of Clostridium acetobutylicum and its physiological characteristics. Journal of Central South University of Forestry & Technology, 2012, 32(8): 103-111.

[12] Syed Q U A, Nadeem M,Nelofer R. Enhanced butanol production by mutant strains of Clostridium acetobutylicum in molasses medium. Turkish Journal of Biochemistry-Turk Biyokimya Dergisi, 2008, 33(1): 25-30.

[13] 张益棻, 陈军, 杨蕴刘, 等. 高丁醇比丙酮丁醇梭菌的选育与应用. 工业微生物, 1996, 3(4): 1-6. Zhang Y F, Chen J, Yang Y L, et al. Breeding of high-ratio butanol strains of Clostridicum acetobutylicum and application to industrial production. Industrial Microbiology, 1996, 3(4): 1-6.

[14] 靳孝庆, 周华, 昊薛明, 等. 丙酮-丁醇发酵生产菌的快速筛选方法. 过程工程学报, 2008, 8(6): 1185-1189. Jin X Q, Zhou H, Wu X M, et al. A rapid screening method of producing strain in acetone-butanol fermentation. The Chinese Journal of Process Engineering, 2008, 8(6): 1185-1189.

[15] Annous B A,Blaschek H P. Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity. Applied and Environmental Microbiology, 1991, 57(9): 2544-2548.

[16] Gao K, Li Y, Tian S, et al. Screening and characteristics of a butanol-tolerant strain and butanol production from enzymatic hydrolysate of NaOH-pretreated corn stover. World Journal of Microbiology & Biotechnology, 2012, 28(10): 2963-2971.

[17] Jang Y S, Malaviya A,Lee S Y. Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19. Biotechnology and Bioengineering, 2013, 110(6): 1646-1653.

[18] Nolling J, Breton G, Omelchenko M V, et al. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. Journal of Bacteriology, 2001, 183(16): 4823-4838.

[19] Cooksley C M, Zhang Y, Wang H, et al. Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metabolic Engineering, 2012, 14(6): 630-641.

[20] Harris L M, Blank L, Desai R P, et al. Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. Journal of Industrial Microbiology & Biotechnology, 2001, 27(5): 322-328.

[21] 方雪, 刘刚, 邢苗, 等. 丙酮丁醇梭菌代谢工程菌的构建及其发酵性能. 食品与发酵工业, 2014, 40(2): 99-105. Fang X, Liu G, Xing M, et al. Metabolic engineering and fermentation properties of Clostridium acetobutylicum. Food and Fermentation Industries, 2014, 40(2): 99-105.

[22] Bormann S, Baer Z C, Sreekumar S, et al. Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors. Metabolic Engineering, 2014, 25: 124-130.

[23] Jang Y S, Lee J Y, Lee J, et al. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. Mbio, 2012, 3(5): e00314-12.

[24] Harris L M, Desai R P, Welker N E, et al. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnology and Bioengineering, 2000, 67(1): 1-11.

[25] Lehmann D, Honicke D, Ehrenreich A, et al. Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways. Applied Microbiology and Biotechnology, 2012, 94(3): 743-754.

[26] Lehmann D, Radomski N,Lutke-Eversloh T. New insights into the butyric acid metabolism of Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 2012, 96(5): 1325-1339.

[27] Kuit W, Minton N P, Lopez-Contreras A M, et al. Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production. Applied Microbiology and Biotechnology, 2012, 94(3): 729-741.

[28] Jiang Y, Xu C, Dong F, et al. Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metabolic Engineering, 2009, 11(4-5): 284-291.

[29] Ventura J R, Hu H,Jahng D. Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes. Applied Microbiology and Biotechnology, 2013, 97(16): 7505-7516.

[30] Hou X, Peng W, Xiong L, et al. Engineering Clostridium acetobutylicum for alcohol production. Journal of Biotechnology, 2013, 166(1-2): 25-33.

[31] Scotcher M C,Bennett G N. SpoII E regulates sporulation but does not directly affect solventogenesis in Clostridium acetobutylicum ATCC 824. Journal of Bacteriology, 2005, 187(6): 1930-1936.

[32] Nair R V, Green E M, Watson D E, et al. Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. Journal of Bacteriology, 1999, 181(1): 319-330.

[33] Tomas C A, Welker N E,Papoutsakis E T. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Applied and Environmental Microbiology, 2003, 69(8): 4951-4965.

[34] Mann M S, Dragovic Z, Schirrmacher G, et al. Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress. Biotechnology Letters, 2012, 34(9): 1643-1649.

[35] Luan G, Dong H, Zhang T, et al. Engineering cellular robustness of microbes by introducing the GroESL chaperonins from extremophilic bacteria. Journal of Biotechnology, 2014, 178: 38-40.

[36] Zhu L, Dong H, Zhang Y, et al. Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability. Metabolic Engineering, 2011, 13(4): 426-434.

[37] Gu Y, Li J, Zhang L, et al. Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli. Journal of Biotechnology, 2009, 143(4): 284-287.

[38] Ren C, Gu Y, Hu S, et al. Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. Metabolic Engineering, 2010, 12(5): 446-454.

[39] 戴宗杰, 董红军, 朱岩, 等. 生物丁醇代谢工程的研究进展. 生物加工过程, 2013, 11(2): 58-64. Dai Z J, Dong H J, Zhu Y, et al. Metabolic engineering for biobutanol production:a review. Chinese Journal of Bioprocess Engineering, 2013, 11(2): 58-64.

[40] Dellomonaco C, Clomburg J M, Miller E N, et al. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature, 2011, 476(7360): 355-359.

[41] Shen C R,Liao J C. Metabolic engineering of Escherichia coli for L-butanol and L-propanol production via the keto-acid pathways. Metabolic Engineering, 2008, 10(6): 312-320.

[42] Atsumi S, Hanai T,Liao J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 2008, 451(7174): 86-89.

[43] Atsumi S, Cann A F, Connor M R, et al. Metabolic engineering of Escherichia coli for L-butanol production. Metabolic Engineering, 2008, 10(6): 305-311.

[44] 张艳, 周鹏鹏, 王丕祥, 等. 丁醇合成途径关键酶基因在大肠杆菌中的克隆和表达. 微生物学报, 2012, 52(5): 588-593. Zhang Y, Zhou P P, Wang P X, et al. Cloning and expression of key genes of butanol synthetic pathway in Escherichia coli. Acta Microbiologica Sinica, 2012, 52(5): 588-593.

[45] Inui M, Suda M, Kimura S, et al. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Applied Microbiology and Biotechnology, 2008, 77(6): 1305-1316.

[46] Shen C R, Lan E I, Dekishima Y, et al. Driving forces enable high-titer anaerobic L-butanol synthesis in Escherichia coli. Applied and Environmental Microbiology, 2011, 77(9): 2905-2915.

[47] Atsumi S,Liao J C. Directed evolution of Methanococcus jannaschi citramalate synthase for biosynthesis of L-propanol and L-butanol by Escherichia coli. Applied and Environmental Microbiology, 2008, 74(24): 7802-7808.

[48] Branduardi P, de Ferra F, Longo V, et al. Microbial n-butanol production from Clostridia to non-Clostridial hosts. Engineering in Life Sciences, 2014, 14(1): 16-26.

[49] Steen E J, Chan R, Prasad N, et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microbial Cell Factories, 2008, 7: 36.

[50] Lian J, Si T, Nair N U, et al. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metabolic Engineering, 2014, 24:139-149.

[51] Buijs N A, Siewers V,Nielsen J. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Current Opinion in Chemical Biology, 2013, 17(3): 480-488.

[52] Nielsen D R, Leonard E, Yoon S H, et al. Engineering alternative butanol production platforms in heterologous bacteria. Metabolic Engineering, 2009, 11(4-5): 262-273.

[53] Berezina O V, Zakharova N V, Brandt A, et al. Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Applied Microbiology and Biotechnology, 2010, 87(2): 635-646.

[54] Lan E I,Liao J C. Metabolic engineering of cyanobacteria for L-butanol production from carbon dioxide. Metabolic Engineering, 2011, 13(4): 353-363.

[55] Kim A Y, Attwood G T, Holt S M, et al. Heterologous expression of endo-beta-1,4-D-glucanase from Clostridium cellulovorans in Clostridium acetobutylicum ATCC 824 following transformation of the engB gene. Applied and Environmental Microbiology, 1994, 60(1): 337-340.

[56] Sabathe F,Soucaille P. Characterization of the CipA scaffolding protein and in vivo production of a minicellulosome in Clostridium acetobutylicum. Journal of Bacteriology, 2003, 185(3): 1092-1096.

[57] 杨明, 刘力强, 牛昆, 等. 丙酮丁醇发酵菌的分子遗传改造. 中国生物工程杂志, 2009, 29(10): 109-114. Yang M, Liu L Q, Niu K, et al. Genetic features and modification of Clostridium acetobutylicum and Clostridium beijerinckii for acetone butanol and ethanol fermentation. China Biotechnology, 29(10): 109-114.

[58] Gao X F, Zhao H, Zhang G H, et al. Genome shuffling of Clostridium acetobutylicum CICC 8012 for improved production of acetone-butanol-ethanol (ABE). Current Microbiology, 2012, 65(2): 128-132.

[59] 裴建新, 左文朴, 庞浩, 等. 高产生物丁醇新菌株的筛选、鉴定及发酵研究. 可再生能源, 2011, 29(5): 99-102. Pei J X, Zuo W P, Pang H, et al. Screening,identification and fermentation of a new strain for producing butanol. Renewable Energy Resources, 2011, 29(5): 99-102.

[1] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[2] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[3] 葛慧, 陆文钦, 郭志强. 新型能源纤维素丁醇产业化发展现状及前景分析[J]. 中国生物工程杂志, 2016, 36(2): 115-121.
[4] 王浩, 张敬书, 丁健, 罗洪镇, 陈锐, 史仲平. 限制葡萄糖、葡萄糖/乙酸双底物条件下自由控制丙丁梭菌ABE发酵丙酮浓度和丙酮/丁醇比[J]. 中国生物工程杂志, 2016, 36(10): 60-71.
[5] 吴梦, 刘作华, 林保忠, 兰国成, 邹贤刚, 葛良鹏. 转基因猪研究进展[J]. 中国生物工程杂志, 2015, 35(3): 92-98.
[6] 黎亮, 王泽建, 郭美锦, 储炬, 庄英萍, 张嗣良. 头孢菌素C产生菌的诱变育种及培养基优化[J]. 中国生物工程杂志, 2014, 34(8): 61-66.
[7] 李志刚, 李鑫, 史仲平. 乙、丁酸添加条件下丁醇发酵图论模型的构建[J]. 中国生物工程杂志, 2014, 34(4): 46-52.
[8] 王庆龙, 刘莉, 史吉平, 薛永常, 孙俊松. 丁醇基因在大肠杆菌中表达的现状与展望[J]. 中国生物工程杂志, 2014, 34(06): 90-97.
[9] 郑丽娟, 陈少云, 徐刚, 吴坚平, 杨立荣. 利用双启动子载体构建产异丁醇大肠杆菌[J]. 中国生物工程杂志, 2013, 33(8): 67-74.
[10] 赵健烽, 辛兴, 卫培培, 骞爱荣, Akateh Tazifua Alfred, 商澎, 杨树林. 强磁场重力环境对Pseudomonas aeruginosa N1207的影响[J]. 中国生物工程杂志, 2013, 33(2): 27-33.
[11] 毛绍名, 章怀云. 丙酮丁醇梭菌丁醇耐受性[J]. 中国生物工程杂志, 2012, 32(09): 118-124.
[12] 过泳安, 滕雅群, 诸欧浩迪, 戴漪晨, 査晶晶, 朱旭, 曾晓, 邢晓雪, Mitchell Bieniek, Garrett Flack, 吕继华. 可发酵糖为底物不同菌种丁醇生产能力的研究[J]. 中国生物工程杂志, 2012, 32(03): 91-99.
[13] 郑钧屏, 李志刚, 李鑫, 李乐, 史仲平. 酵母浸粉刺激以木薯为原料的丁醇生产的发酵相转型[J]. 中国生物工程杂志, 2011, 31(12): 72-78.
[14] 刘畅 葛锋 刘迪秋 王剑平 陈朝银. 红曲桔霉素的控制对策[J]. 中国生物工程杂志, 2009, 29(11): 117-122.
[15] 杨明 刘力强 牛昆 贾娟娟 李寅 张延平 王正品. 丙酮丁醇发酵菌的分子遗传改造[J]. 中国生物工程杂志, 2009, 29(10): 109-114.