Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (3): 92-98    DOI: 10.13523/j.cb.20150313
综述     
转基因猪研究进展
吴梦1, 刘作华1,2,3, 林保忠1,2,3, 兰国成4, 邹贤刚4, 葛良鹏1,2,3
1. 重庆市畜牧科学院 重庆 402460;
2. 农业部养猪科学重点实验室 重庆 402460 ;
3. 养猪科学重庆市市级重点实验室 重庆 402460;
4. 剑桥大学癌症研究所 剑桥 CB2 0RE
Recent Progress in Transgenic Pigs
WU Meng1, LIU Zuo-hua1,2,3, LIN Bao-zhong1,2,3, LAN Guo-cheng4, ZOU Xian-gang4, GE Liang-peng1,2,3
1. Chongqing Academy of Animal Sciences, Chongqing 402460, China;
2. Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China;
3. Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China;
4. Cancer Research UK Cambridge University, CB2 0RE
 全文: PDF(443 KB)   HTML
摘要:

转基因猪是指运用分子生物学技术方法,将人工分离或改造过的基因整合到猪的基因组中,并能稳定的遗传给后代.转入的基因可以使猪的某些性状向人类需要的目标发生转变,因此在猪的遗传育种、以及将猪作为药物评价、疾病模型、特异性药物生产的生物反应器和组织器官移植的供体等方面具有重要的作用.就目前转基因猪的研究进展、技术方法及应用现状进行简要的综述.

关键词: 转基因猪功能基因组动物基因工程育种    
Abstract:

Transgenic pigs are animals that have been genetically altered by inserting a transgene (natural or artificial gene) into their genomes to express a new trait, and intend to be stable in the progenies. Therefore, it has most important application in the animal genetics &breeding, drug evaluation, disease animal model, animal bioreactor and xenograft donor, etc. In this paper, the research progress of transgenic pigs, technical methods and application status were briefly reviewed.

Key words: Transgenic pigs    Functiona genomics    Animal genetic engineering breeding
收稿日期: 2014-09-09 出版日期: 2015-03-25
ZTFLH:  Q812  
基金资助:

国家国际科技合作专项(2013DFA31820),国家"863"计划(2014AA021602),重庆市国际合作项目(CSTC2013gjhz80002),重庆市基础与前沿研究(cstc2013jcyjC80001),重庆市农发资金(12402)资助项目

通讯作者: 葛良鹏     E-mail: geliangpeng1982@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

吴梦, 刘作华, 林保忠, 兰国成, 邹贤刚, 葛良鹏. 转基因猪研究进展[J]. 中国生物工程杂志, 2015, 35(3): 92-98.

WU Meng, LIU Zuo-hua, LIN Bao-zhong, LAN Guo-cheng, ZOU Xian-gang, GE Liang-peng. Recent Progress in Transgenic Pigs. China Biotechnology, 2015, 35(3): 92-98.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150313        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I3/92


[1] Groenen M A, Archibald A L, Uenishi H, et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491(7424): 393-398.

[2] Meyers S N, Rodriguez-Zas S L, Beever J E. Fine mapping of a QTL influencing pork tenderness on porcine chromosome 2. BMC Genetics, 2007, 8:69.

[3] Bidanel J P, Rothschild M F. Current status of quantitative trait locus mapping in pigs. Pig News Inform, 2002, 23: 39N-53N.

[4] Nezer C, Collette C,Moreau L, et al. Haplotype sharing refines the location of an imprinted quantitative trait locus with major effect on muscle mass to a 250-kb chromosome segment containing the porcine IGF2 gene. Genetics, 2003, 165(1): 277-285.

[5] Van Laere AS, NguyenM, BraunschweigM, et al. Aregulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 2003, 425(6960): 832-836.

[6] Vodicka P, Hlucilova J, Klima J, et al. Sourcebook of models for biomedical research. Clifton of New Jersey: Human Press, 2008: 241-248.

[7] Zhou X, Xin J, Fan N, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cellular and Molecular Life Sciences, 2014: 1-10.

[8] Lai L, Kolber-Simonds D, Park K W, et al. Production of α-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science, 2002, 295(5557): 1089-1092.

[9] Yang D, Yang H, Li W, et al. Generation of PPARγ mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Research, 2011, 21(6): 979.

[10] Hammer R E, Pursel V G, Rexroad C E, et al. Production of transgenic rabbits, sheep and pigs by microinjection. Nature,1985,315(6021):680-683.

[11] Prather R S, Sims M M, First N L. Nuclear transplantation in early pig embryos. Biology of Reproduction, 1989, 41(3): 414-418.

[12] Golovan S P, Meidinger R G, Ajakaiye A, et al. Pigs expressing salivary phytase produce low-phosphorus manure. Nature Biotechnology, 2001, 19(8): 741-745.

[13] Lai L, Park K W, Cheong H T, et al. Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Molecular Reproduction and Development, 2002, 62(3): 300-306.

[14] Webster N L, Forni M, Bacci M L, et al. Multi-transgenic pigs expressing three fluorescent proteins produced with high efficiency by sperm mediated gene transfer. Molecular Reproduction and Development, 2005, 72(1): 68-76.

[15] Hao Y H, Yong H Y, Murphy C N, et al. Production of endothelial nitric oxide synthase (eNOS) over-expressing piglets. Transgenic Research, 2006, 15(6): 739-750.

[16] Kurome M, Ueda H, Tomii R, et al. Production of transgenic-clone pigs by the combination of ICSI-mediated gene transfer with somatic cell nuclear transfer. Transgenic Research, 2006, 15(2): 229-240.

[17] Ramsoondar J, Vaught T, Ball S, et al. Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation, 2009, 16(3): 164-180.

[18] Sommer J R, Estrada J L, Collins E B, et al. Production of ELOVL4 transgenic pigs: a large animal model for Stargardt-like macular degeneration. British Journal of Ophthalmology, 2011, 95(12): 1749-1754.

[19] Miles E L, O'Gorman C, Zhao J, et al. Transgenic pig carrying green fluorescent proteasomes. PNAS, 2013, 110(16): 6334-6339.

[20] Wei Q X, Fan J H, Li S Z, et al. OMT/PGH gene of Hubei white pigs after integration and expression. Hubei Agricultural Sciences, 1992, 1:29-32.

[21] Zhao H, Chen N. Reserch on nuclear transplantatation in pig. Journal of Wuhan University: Natural Science Edition, 1997, 43(4): 505-510.

[22] Zheng X, Wei Q. Expression of human serum albumin in transgenic pig. Southwest China Journal of Agricultural Sciences, 2003, 16(1): 119-121.

[23] Liu Z, Song J, Wang Z, et al. Somatic cell nuclear transfer production of green fluorescent protein transgenic pigs. Chinese Science Bulletin, 2008, 53(5): 556-560.

[24] Wang T. Preliminary Studies on the Production of Transgenic Pigs Which Can Resist Classical Swine Fever Virus Infection. Changchun: Jilin University, 2009.

[25] Ye L, Li H, Wei H, et al. Production of cloning adult banna miniature inbred pig. Acta Veterinaria et Zootechnica Sinica, 2012, 43(9): 1491-1498.

[26] Fan N, Chen J, Shang Z, et al. Piglets cloned from induced pluripotent stem cells. Cell Research, 2013, 23(1): 162-166.

[27] Guo Z. Animal Embryo Engineering. Beijing:Science and technology of China Press, 1998.

[28] Hu W. Medical Molecular Biology. Beijing:Science Press, 2012.

[29] Hofmann A, Kessler B, Ewerling S, et al. Efficient transgenesis in farm animals by lentiviral vectors. EMBO Reports, 2003, 4(11): 1054-1058.

[30] Zhang Y, Xi Q, Ding J, et al. Production of transgenic pigs mediated by pseudotyped lentivirus and sperm. PloS One, 2012, 7(4): e35335.

[31] Kurome M, Ueda H, Tomii R, et al. Production of transgenic-clone pigs by the combination of ICSI-mediated gene transfer with somatic cell nuclear transfer. Transgenic Research, 2006, 15(2): 229-240.

[32] Liu J, Wu M, Jiang Y, et al. Application of real-time fluorescence quantitative PCR technology for porcine growth hormone gene differential expression of transgenic pigs. Journal of Agricultural Biotechnology, 2012, 20(8): 928-935.

[33] Lai L, Prather R S. Production of cloned pigs by using somatic cells as donors. Cloning & Stem Cells, 2003, 5(4): 233-241.

[34] Pan D, Zhang L, Zhou Y, et al. Somatic cell nuclear transfer production to omega-3 fatty acid desaturase gene sFat-1 cloned pigs. Science China: Section C, 2009 (3): 295-302.

[35] Ahn K S, Won J Y, Park J K, et al. Production of human CD59-transgenic pigs by embryonic germ cell nuclear transfer. Biochemical and Biophysical Research Communications, 2010, 400(4): 667-672.

[36] Lu Y. Generation of Transgenic Wuzhishan Miniature Pigs Expressing Monomeric Red Fluorescent Protein by Somatic Cell Nuclear Transfer. Yanji:Yanbian University, 2013.

[37] Peura T T, Lewis I M, Trounson A O. The effect of recipient oocyte volume on nuclear transfer in cattle. Molecular Reproduction and Development, 1998, 50(2): 185-191.

[38] Vajta G, Lewis I M, Hyttel P, et al. Somatic cell cloning without micromanipulators. Cloning, 2001, 3(2): 89-95.

[39] Garrels W, Mátés L, Holler S, et al. Germline transgenic pigs by Sleeping Beauty transposition in porcine zygotes and targeted integration in the pig genome. PloS One, 2011, 6(8): e23573.

[40] Urnov F D, Rebar E J, Holmes M C, et al. Genome editing with engineered zinc finger nucleases. Nat Rev Genet, 2010, 11(9): 636-646.

[41] Meng X D, Noyes M B, Zhu L J, et al. Targeted gene inactivation in zebrafish using engineered zinc finger nucleases. Nat Biotechnol, 2008, 26(6): 695-701.

[42] Watanabe M, Umeyama K, Matsunari H, et al. Knockout of exogenous EGFP gene in porcine somatic cells using zinc finger nucleases. Biochem Biophys Res Commun, 2010, 402(1): 14-18.

[43] Joung J K, Sander J D. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol, 2013, 14(1): 49-55.

[44] Xin J, Yang H, Fan N, et al. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS One, 2013, 8(12): e84250.

[45] Li X, Yang Y, Bu L, et al. Rosa 26-targeted swine models for stable gene over expression and Cre-mediated lineage tracing. Cell Res, 2014, 24(4): 501-504.

[46] Mussolino C, Cathomen T. RNA guides genome engineering. Nat Biotechnol, 2013, 31(3): 208-209.

[47] Saeki K, Matsumoto K, Kinoshita M, et al. Functional expression of a Delta12 fatty acid desaturase gene from spinach in transgenic pigs. Proc Natl Acad Sci USA, 2004, 101(17): 6361-6366.

[48] Lai L, Kang J X, Li R, et al. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nature Biotechnology, 2006, 24(4): 435-436.

[49] Lou Y. Study on Silent Muscle in Pigs and Mice in the Expression of Myostatin Gene. Beijing: China Agricultural University, 2008.

[50] Park J K, Lee Y K, Lee P, et al. Recombinant human erythropoietin produced in milk of transgenic pigs. Journal of Biotechnology, 2006, 122(3): 362-371.

[51] Yang D, Wang C E, Zhao B, et al. Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Human Molecular Genetics, 2010, 19(20): 3983.

[52] Ji Y. Development of Transgenic Swine Overexpressing Lp-PLA_2. Changchun:Jilin University, 2013.

[53] Chen L. Consruction of Transgenic Swine Inducibly Expressing Cre Recombinase. Changchun:Jilin University, 2013.

[54] Cozzi E, Langford G A, Wright L, et al. Comparative Analysis of Human DAF Expression in the Tissues of Transgenic Pigs and Man//Transplantation Proceedings. Amsterdam:Elsevier,1995, 27(1): 319-320.

[55] Ramirez P, Montoya M J, Rios A, et al. Prevention of Hyperacute Rejection in a Model of Orthotopic Liver Xenotransplantation from Pig to Baboon Using Polytransgenic Pig Livers (CD55, CD59, and H-transferase)//Transplantation Proceedings. Amsterdam:Elsevier, 2005, 37(9): 4103-4106.

[56] Le Bas-Bernardet S, Tillou X, Poirier N, et al. Xenotransplantation of Galactosyl-transferase Knockout, CD55, CD59, CD39, and Fucosyl-transferase Transgenic Pig Kidneys into Baboons//Transplantation Proceedings. Amsterdam:Elsevier, 2011, 43(9): 3426-3430.

[1] 万方, 张斌, 陈民良, 陈进聪, 陈雪岚. 比较ptaack敲除对钝齿棒杆菌产L-精氨酸生理代谢的影响[J]. 中国生物工程杂志, 2015, 35(9): 28-34.
[2] 万方, 陈民良, 张斌, 陈进聪, 陈雪岚. 代谢工程改造微生物高产氨基酸的策略[J]. 中国生物工程杂志, 2015, 35(3): 99-103.
[3] 王鹏, 郑兆鑫, 刘明秋. 猪Mx1和牛Mx1蛋白在PK-15细胞中的表达及其对伪狂犬病病毒的抑制[J]. 中国生物工程杂志, 2015, 35(3): 1-7.
[4] 高文, 高向东, 陆小冬, 徐晨. 蛋白质层析柱复性及工艺评价[J]. 中国生物工程杂志, 2015, 35(3): 84-91.
[5] 杨江科, 毛玲, 周文静, 陈江山, 胡臣. 基于基因的重新设计与高通量筛选策略选育解脂耶氏酵母脂肪酶高产菌株[J]. 中国生物工程杂志, 2014, 34(8): 54-60.
[6] 刘玉雪, 张祎昕, 王磊, 林心萍, 朱志伟, 赵宗保. 重组酿酒酵母催化二氢大豆苷元生产雌马酚[J]. 中国生物工程杂志, 2014, 34(4): 41-45.
[7] 张斌, 陈进聪, 万方, 陈民良, 杨慧林, 陈雪岚. L-精氨酸产生菌的分子育种[J]. 中国生物工程杂志, 2014, 34(4): 127-132.
[8] 田晋红, 刘琦, 战丽萍, 周泽扬. 可视化突变建模、定点突变和表达超耐热菌D-乳酸脱氢酶[J]. 中国生物工程杂志, 2012, 32(05): 73-78.
[9] 金慧, 栾雨时. 转录因子在植物抗病基因工程中的研究进展[J]. 中国生物工程杂志, 2010, 30(10): 94-99.
[10] 廖冰,吴宁,韩凤桐,林秀坤. 牛性别决定新基因Fgf9的克隆及生物信息学分析[J]. 中国生物工程杂志, 2009, 29(08): 45-50.
[11] 林燕,孙海梅,杨慧,曾晓蓓,季凤清. 诱导人脐血间充质干细胞分化为多巴胺能神经元样细胞的研究[J]. 中国生物工程杂志, 2009, 29(03): 1-8.
[12] 曲立娟,黄英. ΦC31整合酶与转基因动物研制[J]. 中国生物工程杂志, 2009, 29(02): 103-107.
[13] 张雨良,张智俊,杨峰山,Mahesh Kulye,袁辉,罗淑萍. 新疆盐生植物车前PmNHX1基因的克隆及生物信息学分析[J]. 中国生物工程杂志, 2009, 29(01): 27-33.