Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (4): 46-52    DOI: 10.13523/j.cb.20140408
研究报告     
乙、丁酸添加条件下丁醇发酵图论模型的构建
李志刚, 李鑫, 史仲平
江南大学生物工程学院 工业生物技术教育部重点实验室 无锡 214122
Model Construction for Butanol Fermentations with Acetate/Butyrate Added by Graph Theory
LI Zhi-gang, LI Xin, SHI Zhong-ping
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
 全文: PDF(843 KB)   HTML
摘要:

有机酸代谢途径在丁醇发酵过程中具有重要的作用,对细胞内碳流的分配和产物的合成影响显著。在7 L厌氧发酵罐中,进行了间歇添加乙酸或丁酸的发酵实验。结果表明,乙、丁酸的添加显著提高了总溶剂的生产效率,分别提高了47.1%和39.2%;此外,丁醇/丙酮比在添加丁酸的批次中提高了21.7%,在添加乙酸的批次中降低了16.2%;厌氧瓶中的发酵实验也证实了以上结果。有机酸代谢计算的结果表明,乙、丁酸的添加基本上阻断了相应有机酸闭环的吸收途径。基于相关报道和代谢计算结果,构建了针对乙、丁酸添加批次的图论模型,并利用该模型对不同发酵条件下的溶剂浓度和丁醇/丙酮比进行了计算。结果表明,该模型很好地预测了实验结果,合理地构建了乙、丁酸添加批次的信号传递线图。

关键词: 丁醇发酵模型构建图论生产效率丁醇/丙酮比    
Abstract:

Acetate/butyrate metabolic pathways play an important role in ABE fermentation and their changes will influence entire carbon fluxes distribution. Several fermentations with intermittent feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and butanol/acetone ratios were improved by 21.7% for butyrate added batch and decreased by 16.2% for acetate added batch. A nonlinear constraint was utilized for acids rates calculation and the results revealed that acetate/butyrate formation pathways were almost blocked by corresponding acids feeding. Then a metabolic model constructed by graph theory was utilized to dispose those cases with acetate/butyrate added and to predict solvents production, in which some improvements were adopted based on the calculation results and related references. The model predicted solvents production, butanol/acetone ratios accurately and constructed the directed signal flow diagrams of ABE network under different conditions correctly.

Key words: Butanol fermentation    Model construction    Graph theory    Solvents productivities    Butanol/acetone ratio
收稿日期: 2014-01-03 出版日期: 2014-04-25
ZTFLH:  Q935  
基金资助:

国家自然科学基金资助项目(20976072)

通讯作者: 史仲平     E-mail: lp19890604@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李志刚, 李鑫, 史仲平. 乙、丁酸添加条件下丁醇发酵图论模型的构建[J]. 中国生物工程杂志, 2014, 34(4): 46-52.

LI Zhi-gang, LI Xin, SHI Zhong-ping. Model Construction for Butanol Fermentations with Acetate/Butyrate Added by Graph Theory. China Biotechnology, 2014, 34(4): 46-52.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140408        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I4/46


[1] Li Z G, Shi Z P, Li X, et al. Evaluation of high butanol/acetone ratios in ABE fermentations with cassava by graph theory and NADH regeneration analysis. Biotechnology and Bioprocess Engineering, 2013, 18: 759-769.

[2] Jang Y S, Lee J Y, Lee J, et al. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. MBio, 2012, 3(5): 1-9.

[3] Green E M, Bennett G N. Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. Applied Biochemistry and Biotechnology, 1996, 57: 213-221.

[4] Green E M, Boynton Z L, Harris L M, et al. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology, 1996, 142(8): 2079-2086.

[5] Desai R P, Papoutsakis E T. Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Applied and Environmental Microbiology, 1999, 65(3): 936-945.

[6] Chen C, Blaschek H. Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101. Applied Microbiology and Biotechnology, 1999, 52(2): 170-173.

[7] 唐波,余晓斌,李灵巧,等. 添加有机酸对Clostridium acetobutylicum合成丙酮和丁醇的影响. 生物加工过程, 2008, 6(3): 24-28. Tang B, Yu X B, Li L Q, et al. Effect of acetic and butyric acids on fermentation production of acetone-butanol by Clostridium acetobutylicum. Chinese Journal of Bioprocess Engineering, 2008, 6(3): 24-28.

[8] Tashiro Y, Takeda K, Kobayashi G, et al. High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. Journal of Bioscience and Bioengineering, 2004, 98(4): 263-268.

[9] Vallino J J, Stephanopoulos G. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnology and Bioengineering, 1993, 41(6): 633-646.

[10] Majewski R, Domach M. Simple constrained-optimization view of acetate overflow in E. coli. Biotechnology and Bioengineering, 1990, 35(7): 732-738.

[11] Varma A, Palsson B O. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Applied and Environmental Microbiology, 1994, 60(10): 3724-3731.

[12] Desai R P, Nielsen L K, Papoutsakis E T. Stoichiometric modeling of Clostridium acetobutylicum fermentations with non-linear constraints. Journal of Biotechnology, 1999, 71(1): 191-205.

[13] 李乐,李志刚,李鑫,等. 木薯和玉米原料丁醇发酵中丁醇丙酮质量比的图论理论计算及其验证. 生物加工过程, 2013, 11(4): 1-7. Li L, Li Z G, Li X, et al. Theoretical calculation of butanol acetone mass ratio by graph theory and its experimental verification in cassava and corn media based butanol fermentations. Chinese Journal of Bioprocess Engineering, 2013, 11(4): 1-7.

[14] Li Z G, Li X, Zheng J P, et al. Butanol extractive fermentation to simultaneously produce properties improved biodiesel and butanol in a water and energy-saving operation way. Journal of Biobased Materials and Bioenergy, 2011, 5(3): 312-318.

[1] . 改善抗体生产效率[J]. 中国生物工程杂志, 1985, 5(3): 77-77.