Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (9): 94-100    
综述     
杂合抗菌肽设计及生物学活性的研究进展
武如娟, 张日俊
中国农业大学动物科技学院 动物营养学国家重点实验室 北京 100193
The Progress of Hybrid Peptides on Design and Biological Activity
WU Ru-juan, ZHANG Ri-jun
State Key Laboratory for Animal Nutrition, College of Animal Science and Technology, China Agriculture University, Beijing 100193, China
 全文: PDF(1349 KB)   HTML
摘要: 随着抗生素在饲料中滥用导致的问题日趋严重,抗菌肽因其分子量小、抗菌谱广、抗菌活性高、耐热性强、不易产生抗药性、对高等生物正常细胞无毒害等优点已成为安全绿色抗生素添加剂替代品的理想选择。随着对抗菌肽结构、功能与杀菌机理研究的深入,人们开始尝试通过各种生物学手段设计杀菌活力更强、抗菌谱更广的杂合抗菌肽。从杂合抗菌肽的设计、生物学活性以及未来的研究方向等方面综述了杂合抗菌肽的研究进展。
关键词: 杂合抗菌肽生物学活性母源抗菌肽    
Abstract: With the over-use of antibiotic in feed, antimicrobial peptides (AMPs) attract more and more attention as new medicine because of small molecular, broad antimicrobial spectrum, high activity, heat tolerance, drug resistance and safe. With the deep research in structure, function and antimicrobial mechanism of AMPs, people try to design new hybrid antimicrobial peptides which possess higher antimicrobial activity and broader spectrum. The paper summarizes the progress of hybrid AMPs from the following aspects:design, biology activity and the future focus.
Key words: Hybrid antimicrobial peptides    Biological activity    Parental antimicrobal peptides
收稿日期: 2013-07-29 出版日期: 2013-09-25
ZTFLH:  Q939.9  
基金资助: 国家自然科学基金资助项目(31272476)
通讯作者: 张日俊zhangrj621@yahoo.com.cn     E-mail: zhangrj621@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
武如娟
张日俊

引用本文:

武如娟, 张日俊. 杂合抗菌肽设计及生物学活性的研究进展[J]. 中国生物工程杂志, 2013, 33(9): 94-100.

WU Ru-juan, ZHANG Ri-jun. The Progress of Hybrid Peptides on Design and Biological Activity. China Biotechnology, 2013, 33(9): 94-100.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I9/94

[1] 王兴顺,耿艺介,李文楚. 抗菌肽抗菌机制及其应用研究进展. 微生物学免疫学进展,2012, 40 (4): 70-75. Wang X SH, Geng Y J, Li W CH. The progress of mechanism and application for antibacterial peptides Progress of Microbial Immunology, 2012, 40 (4): 70-75.
[2] Reddy K V R, Yedery R D, Aranha C. Antimicrobial peptides: premises and promises. Int J Antimicrob Agents, 2004, 24: 536-547.
[3] Boman H,Wade D, Boman A, et a1.Antibacterial and antimicrobial properties of peptides that are cecropin2-melittin hybrids.FEBS Lett, 1989, 259 (1): 103-106.
[4] Andrea G, Giovanna P, Silvia F N. Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol, 2007, 2 (1): 1-33.
[5] 李趣欢, 张文军. 两亲A-螺旋抗菌肽的分子设计研究现状与进展.中国新药杂志, 2005, 14 (9): 1126-1133. Li Q H, Zhang W J. The present station and advance of amphipathicity AMPs on molecular design.Journal of China New Medicine, 2005, 14 (9): 1126-1133.
[6] 王秀青,朱明星,张爱君, 等.天蚕素类杂合肽cecropinA-magajnin突变体的合成以及在毕赤酵母中的分泌表达.东北农业大学学报, 2009, 40 (11):95-98. Wang X Q, Zhu M X, Zhang A J, et al. Design and expression of hybrid peptide cecropinA-magajnin in Pichia pastoris. Academic Journal of Northeast Agricultural University, 2009, 40 (11): 95-98.
[7] Yeaman M R, Yount N Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev, 2003, 55 (1): 27-55.
[8] Bals R. Epithelial antimicrobial peptides in host defense against infection. Respir Res, 2000, 1 (3): 141-150.
[9] Lemaitre B, Reichhart J M, Hoffmann J A. Drosophila host defense: Differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA, 1997, 94 (26): 14614-14619.
[10] Syma K, Peter J. B. Multiscale molecular dynamics simulations of membrane proteins. Biomolecular simulations: Methods and Protocols. Methods in Molecular Biology, 2013, 924:635-637.
[11] Chen H C, Brown J H, Morell J L, et al. Synthetic magainin analogues with improved antimicrobial activity. FEBS Lett, 1988, 236: 462-466.
[12] Ohsaki Y, Gazdar A F, Chen H C, et al. Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res, 1992, 52:3534-3538.
[13] Hancock R E. Cationic peptides:efectors in innate immunity and novel antimicrobials. Lancet Infect Dis, 2001, 1 (3):156-164.
[14] Dathe M, Nikolenko H, Meyer J, et al. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett, 2001, 501: 146-150.
[15] 宋雪莹,冯兴军,李静. 抗菌肽分子设计研究进展. 饲料博览, 2010, 9: 13-15. Song X Y, Feng X J, Li J. The advance of AMPS on molecular design. Feed Expo, 2010, 9: 13-15.
[16] Lee D G, KimH N, Park Y, et al. Design ofnovel analogue peptides with potent antibiotic activity based on the antimicrobial peptide,HP(2-20), derivedfrom N-terminus of Helicobacter pylori ribosomal protein L1.Biochem Aiophys Acta, 2002, 1598 (1,2):185-194.
[17] Christopher E D, Ayman H, Robin A H, et al. Origin of lowmammalian cell toxicity in a class of highly active antimicrobial amphipathic helical peptides. J Bio Chem, 2008, (4):1-20.
[18] Uematsu N, Matsuzaki K. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study. Biophys J, 2000, 79: 2075-2083.
[19] Matsuzaki K, Harada M, Funakoshi S, et al. Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. Biochim Biophys Acta, 1991, 1063:162-170.
[20] Matsuzaki K, Mitani Y, Akada K Y, et al. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry, 1998, 37: 15144-15153.
[21] 刘琳,马廷方,祝永强,等. 抗菌肽的结构特征及其与活性的关系. 药物生物技术, 2008, 15(1):64-67. Liu L, Ma T F, Zhu Y Q, et al. The structural character of AMPs and the relationship between structure and activity. Pharmaceutical Biotechnology, 2008, 15 (1): 64-67.
[22] Shin S Y, Kang S W, Lee D G, et al. CRAMP analogues having potent antibiotic activity against bacterial, fungal, and tumor cells without hemolytic activity. Biochem Biophys Res Commun, 2000, 275: 904-909.
[23] Shin, S. Y, Rang, J. H, Hahm, K S. Structure-antibacterial, antitumor and hemolytic activity relationships of cecropin A-magainin 2 and cecropin A-melittin hybrid peptides. J Pept Res, 1999, 53: 82-90.
[24] Lee K, Shin S Y, Kim K, et al. Antibiotic activity and structural analysis of the scorpion derived antimicrobial peptide IsCT and its analogs. Biochem Bioph Res Co, 2004, 323 (2):712-719.
[25] Jaynes J M.Use of genes encoding novel lytic peptides and proteins that enhance microbial disease esistance in plants.Acta Hortic,2007, 336: 33-39.
[26] Boman H G,Hultmark D.Cell free immunity in insects.Ann Rev Microbiol,1987,41:103-126.
[27] Wade D, Andreu D. Antibacterial peptides designed as analogs or hybrids of cecropins andmelittin. Int J Pept Protein Res, 1992, 40 (5): 429-436.
[28] Andreu D, Ubach J, Boman A, et al. Shortened cecropin A-melittin hybrids. Significant size reduction retains potent antibiotic activity. FEBS Lett, 2002, 24: 347-353.
[29] Shin S Y, Lee M K, Kim k l, et al. Structure-antitumor and hemolytic activity relationships of synthetic peptides derived from cecropin A-magainin 2 and cecropin A-melittin hybrid peptides. J Pept Res, 1997, 50: 279-185.
[30] Strom M B,Hang B E,Rekdal O,et al.Important structural features of 15-residue lactoferricin derivatives and methods for improvements of antimicmbial activity. Biochem Cell Biol,2002,80 (1):65-74.
[31] 冯兴军,李静,赵晓宇, 等,牛乳铁蛋白素-马盖宁杂合抗菌肽的设计、合成及抑菌活性.东北农业大学学报, 2011, 42 (3):105-109. Feng X J, Li J, Zhao X Y, et al. Design, synthesis, antibacterial activity of bovine lactoferrin-maganine hybrid peptide. Academic Journal of Northeast Agricultural University, 2011, 42 (3): 105-109.
[32] Strom M B,Hang B E,Rekdal O,et al.Important structural features of 15-residue lactoferricin derivatives and methods for improvements of antimicmbial activity.Biochem Cell Biol,2002,80 (1):65-74.
[33] Daher, K A, Selsted, M E. Lehrer R I. Direct inactivation of viruses by human granulocyte defensins, Am Soc Microbiol, 1986, 60: 1068-1074.
[34] Wachinger M, Kleinschmidt A, Winder D, et al. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gene Virol, 1998, 79: 731-740.
[35] Andersen, J H, Jenssen H. Anti-HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparin sulphate at the cell surface. J Med Syst, 2004, 74 (2): 262-271.
[37] Baker M A, Maloy W L, Zasloff M, et al. Anticancer efficacy of magainin 2 and analogue peptides. Cancer Res, 1993, 53:3052-3057.
[38] Soballe P W, Maloy W L, Myrga M L, et al. Experimental local therapy of human melanoma with lytic magainin peptides. Int J Cancer, 1995, 60:280-284.
[39] Lehmann J, Retz M, Sidhu S S, et al. Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur Urol, 2006, 50:141-147.
[40] Moore A J, Devine D A, Bibby M C. Preliminary experimental anticancer activity of cecropins. Pept Res, 1994, 7:265-269.
[41] Yoo Y C, Watanabe S, Watanabe R, et al. Bovine lactoferrin and lactoferricin inhibit tumor metastasis in mice. Adv Exp Med Biol, 1998, 443:285-291.
[42] Mader J S, Salsman J, Conrad D M, et al. Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol Cancer Ther, 2005, 4:612-624.
[43] Eliassen LT, Berge G, Leknessund A, et al. The antimicrobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo. Int J Cancer, 2006, 119:493-500.
[44] Eliassen LT, Berge G, Sveinbjornsson B, et al. Evidence for a direct antitumor mechanism of action of bovine lactoferricin. Anticancer Res, 2002, 22: 2703-2710.
[45] Bateman A, Singh A, Jothy S, et al. The levels and biologic action of the human neutrophil granule peptide HP-1 in lung tumors. Peptides, 1992, 13:133-139.
[46] Mizukawa N, Sugiyama K, Kamio M, et al. Immunohistochemical staining of human alpha-defensin-1 (HNP-1), in the submandibular glands of patients with oral carcinomas. Anticancer Res, 2000, 20:1125-1127.
[47] Muller C A, Markovic-Lipkovski J, Klatt T, et al. Human alpha-defensins HNPs-1,-2, and-3 in renal cell carcinoma influences on tumor cell proliferation. Am J Pathol, 2002, 160:1311-1324.
[48] Holterman D A, Diaz J I, Blackmore P F, et al. Overexpression of alpha-defensin is associated with bladder cancer invasiveness. Urol Oncol, 2006, 24:97-108.
[49] Hancock R E W, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol, 2000, 8:402-410.
[50] Ganz T, Metcalf J A, Gallin J I, et al. Microbicidal/ cytotoxic proteins of neutrophils are deficient in two disorders: Chediak-Higashi syndrome and 'specific’ granule deficiency. J Clin Invest, 1988, 82:552-556.
[51] Putsep K, Carlsson G, Boman H G, et al. Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet, 2002, 360:1144-1149.
[52] Ong P Y, Ohtake T, Brandt C, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med, 2002, 347:1151-1160.
[53] Nomura I, Goleva E, Howell M D, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol, 2003, 171:3262-3269.
[54] Moser C, Weiner D J, Lysenko E, et al. β-Defensin 1 contributes to pulmonary innate immunity in mice. Infect Immun 2002, 70:3068-3072.
[55] Rosenberger C M, Gallo R L, Finlay B B. Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc Natl Acad Sci USA, 2004, 101:2422-2427.
[56] Iimura M, Gallo R L, Hase K, et al. Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol, 2005, 174:4901-4907.
[57] Nizet V, Ohtake T, Lauth X, et al, Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature, 2001, 414:454-457.
[58] Salzman N H, Ghosh D, Huttner K M, et al. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature, 2003, 422:522-526.
[1] 陈英,肖海鹏,张晓焰,龚庆伟,马利,李文佳,陈小锋. GLP-1-IgG4-Fc融合蛋白的表达与鉴定 *[J]. 中国生物工程杂志, 2018, 38(7): 58-66.
[2] 刘晓明, 姜宁, 张爱忠, 蔡鹏. 杂合抗菌肽在毕赤酵母中的表达及其活性测定[J]. 中国生物工程杂志, 2016, 36(2): 81-89.
[3] 高相雷, 林树珊, 龚庆伟, 潘兰, 马利, 冯艳, 林小鹊, 曾剑, 李文佳, 陈小锋, 陈英. 重组人胰高血糖素样肽-1类似物的分离纯化和鉴定[J]. 中国生物工程杂志, 2016, 36(12): 15-20.
[4] 童良琴, 曲亚军, 陈敏. 乳酸菌胞外多糖的研究进展[J]. 中国生物工程杂志, 2015, 35(11): 85-91.
[5] 李翠琳, 张帆, 陈丹扬, 王昊, 郭强, 杜军. 人源TNFα的原核表达及活性测定[J]. 中国生物工程杂志, 2014, 34(8): 1-6.
[6] 黄振蓉, 吴海丽, 张三军, 杜冰, 钱旻, 任华. E.coli RecQ解旋酶克隆表达纯化及生物学活性检测[J]. 中国生物工程杂志, 2013, 33(3): 21-27.
[7] 宋林涛, 姜潮, 李校堃. 成纤维细胞生长因子18(FGF18)的研究进展[J]. 中国生物工程杂志, 2012, 32(09): 95-100.
[8] 倪蓓蓓, 范真真, 陈虹, 黄秉仁. 重组融合蛋白EGF-E4orf4多聚体的鉴定 及结构分析[J]. 中国生物工程杂志, 2012, 32(07): 1-7.
[9] 王一, 田海山, 李校堃. 成纤维细胞生长因子8(FGF8)研究进展[J]. 中国生物工程杂志, 2011, 31(01): 75-80.
[10] 傅蕾,彭仕芳,谭德明,刘洪波. 人sTNFR1基因的克隆、融合表达与生物学活性[J]. 中国生物工程杂志, 2007, 27(7): 88-93.
[11] 陈俊杰,孔祥平,佟明华,李茹冰,杨联萍,游松. 人肝再生增强因子在毕赤酵母中的表达、纯化和生物学活性的研究[J]. 中国生物工程杂志, 2007, 27(6): 22-26.
[12] 刘洪波,范学工,Haichao,Wang,彭建萍,黄建军,李宁. 人HMGB1分子的克隆、重组蛋白表达与生物学活性[J]. 中国生物工程杂志, 2006, 26(11): 20-23.
[13] 史娟, 张锦春, 畅晓燕, 刘士廉, 刘彦信, 郑德先. 重组可溶性TRAIL的表达与生物学活性[J]. 中国生物工程杂志, 2003, 23(6): 46-49.
[14] 李洪军, 胡宗利, 魏泓. 防御素(Defensin)研究进展[J]. 中国生物工程杂志, 2001, 21(3): 34-37.
[15] 张翊, 王军志, 饶春明. 人降钙素基因相关肽脂质体质量标准的研究[J]. 中国生物工程杂志, 2001, 21(1): 75-78.