Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (11): 85-91    DOI: 10.13523/j.cb.20151112
综述     
乳酸菌胞外多糖的研究进展
童良琴, 曲亚军, 陈敏
山东大学生命科学学院 微生物技术国家重点实验室 国家糖工程技术研究中心 济南 250100
Research Advance on Exopolysaccharides Synthesized by Lactic Acid Bacteria
TONG Liang-qin, QU Ya-jun, CHEN Min
Natioal Glycoengineering Research Center, State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan 250100, China
 全文: PDF(603 KB)   HTML
摘要:

乳酸菌胞外多糖是乳酸菌生长代谢过程中产生并分泌到细胞外的一种天然高分子聚合物。作为一种新型的天然食品添加剂,乳酸菌胞外多糖因其独特的生理功能和产业潜力而备受研究者青睐。但由于乳酸菌胞外多糖结构组分、功能效用的不同,很难建立一个通用的生产方法和检测标准。另外,如何提高胞外多糖产量也是未来要面临的一大挑战。从乳酸菌胞外多糖的遗传研究、结构修饰、构效关系、生物学活性几个方面进行综述,并对未来研究方向进行展望。

关键词: 乳酸菌结构分析胞外多糖构效关系生物学活性    
Abstract:

Exopolysaccharides (EPS)of lactic acid bacteria (LAB)are natural polymers produced by LAB. As a new type of natural food additives, EPS of LAB catch the attention of researchers by its immense physiological function and industrial potential. But due to the differences between the composition and function of EPS, It is difficult to establish universal methods and criterions of detection. Also, how to improve the yield of EPS is a great challenge.The genetics of EPS, structure analysis, structure-function relationship, biological activity and further researches will be summarized.

Key words: Exopolysaccharides    Lactic acid bacteria    Biological activity    Structure analysis    Structure-function relationship
收稿日期: 2015-06-17 出版日期: 2015-11-25
ZTFLH:  Q53  
基金资助:

国家自然科学基金(31270983,31070824,J1103515),教育部留学回国人员科研启动基金,山东省自然科学基金(2009ZRB019SQ)资助项目

通讯作者: 陈敏     E-mail: chenmin@sdu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

童良琴, 曲亚军, 陈敏. 乳酸菌胞外多糖的研究进展[J]. 中国生物工程杂志, 2015, 35(11): 85-91.

TONG Liang-qin, QU Ya-jun, CHEN Min. Research Advance on Exopolysaccharides Synthesized by Lactic Acid Bacteria. China Biotechnology, 2015, 35(11): 85-91.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20151112        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I11/85

[1] Majamaa H, Isolauri E, Saxelin M, et al. Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. Journal of Pediatric Gastroenterology and Nutrition , 1995,20(3):333-338.
[2] 苗君莅,于鹏,肖杨,等. 胞外多糖的研究现状与展望. 食品科技, 2014, 39(10):226-231. Miao J L, Yu P, Xiao Y,et al. Advances and prospect of exopolysaccharides. Food science and technology, 2014,39(10):226-231.
[3] Saeed A, Hayek A, Ibrahim. Current limitations and challenges with lactic acid bacteria: a review. Food and Nutrition Science, 2013, 4(11):73-87.
[4] Seema P, Avishek M, Arum G. Potentials of exopolysaccharides from lactic acid bacteria. Indian Journal of Microbiology, 2012,52(1):3-12.
[5] Stingle F, Neeser J R, Mollet B. Identification and characterization of the eps (exopolysacharride) gene cluster from Streptococcus thermopilus Sfi6. Journal of Bacteriology, 1996, 178(6):1680-1690.
[6] Van Kranenburg R, Marvgg J D, et al. Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Molecular Microbiology, 1997,24(2) :387-397.
[7] Lamothe G T, Jolly L, Mollet B,et al. Genetic and biochemical characterization of exopolysaccharide biosynthesis by Lactobacillus delbrneckii subsp bulgaricus. Archives of Microbiology, 2002, 178(3):218-228.
[8] 田政, 王辑, 郑喆, 等. 乳酸菌胞外多糖的结构及功能特性研究进展. 食品安全质量检测学报, 2013, 4(3):783-788. Tian Z, Wang J, Zheng Z, et al. Research advances on structure and function of exopolysaccharides produced by lactic acid bacteria. Journal of Food Safety & Quality, 2013,4(3):783-788.
[9] Germond J E, Delley M, D'Amico N, et al. Heterologous expression and characterization of the exopolysaccharide from Streptococcus thermophilus Sfi39. European Journal of Biochemistry, 2001, 268(19):5149-5156.
[10] 胡盼盼, 宋微,杜明,等. 乳酸菌胞外多糖的研究进展. 粮油食品科技, 2014,24(5):87-91. Hu P P, Song W, Du M,et al. Research progress in exopolysaccharides produced by lactic acid bacteria. Science and Technology of Cereals:Oils and Food, 2014,24(5):87-91.
[11] Sutherland I. Polysaccharases for microbial exopolysaccharides. Carbohydr Polymers,1999, 38(4):319-328.
[12] Ruussenaars H J, Stngele F, Hartmans S. Biodegradability of food-associated extracellular polysaccharides. Current Microbiology, 2000, 40(3):194-199.
[13] Breedveld M, Bonting K, Dijkhuizen L. Mutational analysis of exopolysaccharide biosynthesis by Lactobacillus sakei 0-1. Fems Microbiology Letters, 1998,169(2):241-249.
[14] Grobben G J, Smith M R, Sikkema J, et al. Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772. Applied Microbiol Biotechnology, 1996, 46(3):279-284.
[15] 王鹏, 江晓路, 江艳华,等. 细菌胞外多糖构效关系及特性的研究[J] 食品科学, 2005, 26(11):257-260. Wang P, Jiang X L, Jiang Y H, et al. Review on research and development on structure-function relationship and characterstics of bacterial exopolysaccharides. Food Science, 2005,26(11):257-260.
[16] 颜炳祥, 潘道东, 曾小群. 乳酸菌胞外多糖硒化修饰及其抗氧化活性研究. 中国食品学报, 2012, 12(2):15-23. Yan B X, Pan D D, Zeng X Q. Study on selenium modification and antioxidant activity of lactic acid bacteria exopolusaccharides. Journal of Chinese Institute of Food Science, 2012,12(2):15-23.
[17] 王雪. AAP I-a黑木耳多糖的分离纯化及其抗衰老功能的研究.哈尔滨:哈尔滨工业大学, 生命科学学院,2009. Wang X. Study on Purification and Anti-aging Function of Polysaccharides from Auriculria auricula. Harbin:Harbin Institute of Technology, School of Life Science,2009.
[18] 贺珍俊. 多糖的分子修饰与抗凝血活性. 呼和浩特:内蒙古大学,生命科学学院,2004. He Z J . Molecule Modification of Polysaccharides and Anticoagulation Activity. Hohhot:Inner Mongolia University,School of Life Science,2004.
[19] Franz G, Alban S. Structure-activity relationship of antithrombotic polysaccharide derivatives. International Journal of Biological Macromolecules,1995,17(6):311-314.
[20] 邱琳, 辛现良, 耿美玉. 多糖构效关系研究进展. 现代生物医学进展, 2009, 9(9):1764-1768. Qiu L, Xin X L, Geng M Y. Advances in the structure-function relationship of polysaccharides. Progress in Modern Biomedicine, 2009,9(9):1764-1768.
[21] 周金黄, 王建华. 中药药理与临床研究进展.第三册.北京:军事医学科学出版社, 1996:179. Zhou J H, Wang J H. Progress in Pharmacology and Clinical Research of Chinese Medicine. Volume 3. Beijing:Military Medical Science Press,1996:179.
[22] Faber E J, van Haaster D J, Kamerling J P, et al. Structure of the extracellular polysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus 291. Carbohydrate Research, 2001,331(2):183-194.
[23] Staaf M, Yang Z, Huttunen E, et al. Structural elucidation of the viscous exopolysaccharide produced by Lactobacillus helveticus Lb161. Carbohydrate Research, 2000,326(2):113-119.
[24] Navarini L, Abatangelo A, Bertocchi C, et al. Isolation and characterization of the exopolysaccharide produced by Streptococcus thermophilus SFi20. Int J Biol Macromol, 2001,28(3):219-226.
[25] Low D, Ahlgren J A, Home D, et al. Role of Streptococcus thermophilus MR-1C capsular exopolysaccharide in cheese moisture retention. Applied and Environmental Microbiology, 1998, 64(6):2147-2151.
[26] Fuber E J, Kamerling J P, Vliegenthat J F, et al. The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohudrate Research, 1998,310(4):269-276.
[27] Hong S H, Marshall R T. Natural exopolysaccharides enhance survival of lactic acid bacteria in frozen diary desserts. Journal of Dairy Science, 2001, 84(6):1367-1374.
[28] van Casteren W H, Dijkema C. Structural characterisation and enzymic modification of the exopolysaccharide produced by Lactococcus lactis subsp.cremoris B39. Carbohydrate Research, 2000,324(3):170-181.
[29] Vuyst D, Bart D. Heteropolysaccharides from lactic acid bacteria. Fems Microbiology Reviews, 1999, 23(2): 153-177.
[30] Kitazawa H,Toba T, Itoh T, et al. Antitumoral activity of slime-forming encapsulated Lactococcus lactis subsp. cremoris isolated from Scandinavian ropy sour milk, "viili". Animal Science and Technology (Japan), 1991, 62(3): 277-283.
[31] Kitazawa H, Yamaguchi T, Itoh T. B-cell mitogenic activity of slime products produced from slime-forming encapsulated Lactococcus lactis subsp. cremoris. Journal of Dairy Science, 1992,75(1):2946-2951.
[32] Ismail B, Nampoothiri K M. Exposition of antitumor activity of a chemically characterized exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510. Biologia, 2013,68(6):1041-1045.
[33] 秦晓萌,张远森,柳陈坚,等. 乳酸菌胞外多糖生理功能及合成途径的研究进展.食品工业科技, 2015,36(4):389-399. Qin X M, Zhang Y S, Liu C J,et al. Progress on the physiological function and synthesis pathways of lactic acid bacteria exopolysaccharide. Science and Technology of Food, 2015,36(4):389-399.
[34] 刘佳,潘道东. 硒化乳酸菌胞外多糖对小鼠腹腔巨噬细胞免疫功能的影响. 营养学报, 2013, 35(1):35-38. Liu J, Pan D D. The immunomodulatory effects of selenium exopolysaccharide on mouse peritoneal macrophages. Acta Nutrimenta Sinica, 2013, 35(1):35-38.
[35] 顾笑梅,王富生,孔健,等. 乳酸菌Z222产胞外多糖对免疫细胞功能的影响. 中华微生物学和免疫学杂志, 2003,2(43):251-256. Gu X M, Wang F S, Kong J,et al. Effect of EPS I produced by Lactobacillus strain Z222 on cellular immunity. Chinese Journal of Microbiology and Immunology, 2003,2(43):251-256.
[36] 顾瑞霞. 乳酸菌胞外多糖生物合成及生理功能特性的研究. 哈尔滨:东北农业大学,生命科学学院,2000:77-85. Gu R X. Studies on synthesis and physiological functions of exopolysaccharides of lactic acid bacteria. Harbin: Northeast Agricultural University,School of Life Science,2000:77-85.
[37] Chong E S. Apotential role of probiotics in colorectal caention:review of possible mechanisms of action. World Journal of Microbiology and Biotechnolncer Prevogy, 2014,30(2):351-374.
[38] 李超, 王春凤, 杨桂连. 乳酸菌胞外多糖肠道粘附及免疫调节作用研究进展. 食品科学, 2014, 35(11):314-318. Li C, Wang C F, Yang G L. Progress in intestinal adhension and immunoregulatory effect of extracellular polysaccharides of lactic acid bacteria. Food Science, 2014,35(11):314-318.
[39] Looijesteijn P J, Trapet L, de Vries, et al. Physiological function of exopolysaccharides produced by Lactococcus lactis. International Journal of Food Microbiology, 2001, 64(1-2):71-80.
[40] Germond J E, Delley M, D'Amico N, et al. Heterologous expression and characterization of the exopolysaccharide from Streptococcus thermophilus Sfi39. Eur Journal of Biochemistry, 2001, 268(19):5149-5156.
[41] Monaco R D, Torrieri E, Pepe O, et al. Effect of sourdough with exopolysaccharide (EPS)-producing lactic acid bacteria (LAB)on sensory quality of bred during shelf life. Food and Bioprocess Technology, 2015, 8(3):691-701.

[1] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[2] 明玥,赵自通,王鸿磊,梁志宏. 基于序列和结构分析的酶热稳定性改造策略*[J]. 中国生物工程杂志, 2021, 41(10): 100-108.
[3] 陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.
[4] 邓廷山,武国干,孙宇,唐雪明. 苯乳酸生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 62-68.
[5] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[6] 陈英,肖海鹏,张晓焰,龚庆伟,马利,李文佳,陈小锋. GLP-1-IgG4-Fc融合蛋白的表达与鉴定 *[J]. 中国生物工程杂志, 2018, 38(7): 58-66.
[7] 彭德莲, 刘霞, 黄亚东, 肖雪, 苏志坚. 人金属硫蛋白在乳酸菌中的融合表达及其预防食源性镉污染的应用 *[J]. 中国生物工程杂志, 2018, 38(3): 41-50.
[8] 张玉富, 王建文, 李松涛, 朱张亮, 路福平, 毛淑红, 秦慧民. 来源于红球菌胆固醇氧化酶ChOG的异源表达、纯化及催化反应结构分析[J]. 中国生物工程杂志, 2017, 37(6): 43-49.
[9] 徐云巧, 李婷婷, 吴彩娥, 范龚健, 李佟. 糖蛋白的去糖基化方法研究进展[J]. 中国生物工程杂志, 2017, 37(5): 97-106.
[10] 高相雷, 林树珊, 龚庆伟, 潘兰, 马利, 冯艳, 林小鹊, 曾剑, 李文佳, 陈小锋, 陈英. 重组人胰高血糖素样肽-1类似物的分离纯化和鉴定[J]. 中国生物工程杂志, 2016, 36(12): 15-20.
[11] 李翠琳, 张帆, 陈丹扬, 王昊, 郭强, 杜军. 人源TNFα的原核表达及活性测定[J]. 中国生物工程杂志, 2014, 34(8): 1-6.
[12] 马婷婷, 张健, 粟月萍, 宋张杨, 唐咸来, 申佩弘, 武波. Sinorhizobium fredii WGF03胞外多糖分泌相关基因exoD功能初探[J]. 中国生物工程杂志, 2014, 34(06): 47-54.
[13] 武如娟, 张日俊. 杂合抗菌肽设计及生物学活性的研究进展[J]. 中国生物工程杂志, 2013, 33(9): 94-100.
[14] 张秋香, 侯慧丽, 芦颖, 陈卫, 钟瑾. 猪链球菌口服疫苗的制备及小鼠血清免疫效果的评价[J]. 中国生物工程杂志, 2013, 33(7): 25-30.
[15] 黄振蓉, 吴海丽, 张三军, 杜冰, 钱旻, 任华. E.coli RecQ解旋酶克隆表达纯化及生物学活性检测[J]. 中国生物工程杂志, 2013, 33(3): 21-27.