Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (2): 81-89    DOI: 10.13523/j.cb.20160212
技术与方法     
杂合抗菌肽在毕赤酵母中的表达及其活性测定
刘晓明, 姜宁, 张爱忠, 蔡鹏
黑龙江八一农垦大学动物科技学院 大庆 163319
Expression of Hybrid Antimicrobial Peptides in Pichia Yeast and Identification of Its Biological Activity
LIU Xiao-ming, JIANG Ning, ZHANG Ai-zhong, CAI Peng
College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
 全文: PDF(757 KB)   HTML
摘要:

为获得溶血活性低、抗菌活性高的杂合抗菌肽,以家蝇抗菌肽Cec Md和中国林蛙抗菌肽Chensirin为母体肽,并结合毕赤酵母偏爱密码子的原则,设计出6条具有抗菌潜力的新型杂合抗菌肽,将其命名为CC22、CC28、CC29、CC30和CC34(1),CC34,利用SOE-PCR技术合成所需的目的基因,并将其克隆至毕赤酵母表达载体pGAPZαA,通过电击转化技术,将其转化至毕赤酵母SMD1168中,经含有Zeocin的抗性平板筛选阳性转化子,YPD液体培养72h后,经Tricine-SDS-PAGE检测出目的蛋白,然后采用高效液相色谱法对其进行纯化。检测结果显示,表达产物CC29对大肠杆菌、鸡沙门氏菌的最小抑菌浓度(MIC)均为25μg/ml;CC34(1)对大肠杆菌表现相对较弱的抑制作用,最小抑菌浓度为100μg/ml;CC34对鸡沙门氏菌和金黄色葡萄球菌的最小抑菌浓度为50μg/ml;且杂合抗菌肽对有益菌均没有表现出抑制作用。6条杂合肽的溶血活性均呈现较低水平,其中表现出抗菌活性的3条抗菌肽中,以CC29的溶血活性最低,CC34(1)和CC34相对次之。结合抑菌活性,CC29和CC34的抑菌效果较为明显,从而确定溶血活性低且抗菌活性较高的CC29和CC34为新型杂合抗菌肽。

关键词: 溶血活性表达杂合抗菌肽抑菌活性毕赤酵母    
Abstract:

In order to obtain hybrid antimicrobial peptides which have low haemolytic activity and strong antibacterial activity, six hybrid antimicrobial peptides were designed depend on Musca domestica Cec Md and Rana Chensinensis as well as preference condon of Pichia yeast, named CC22, CC28, CC29, CC30, CC34(1) and CC34. The target genes of six hybrid antimicrobial peptides were synthesized successfully by SOE-PCR and, were cloned into the expression vector pGAPZαA of Pichia pastoris. Which were transformed into Pichia pastoris SMD1168 by electrotransformation, and the positive transformants which containing hybrid antimicrobial peptides gene were selected using high concentrations of Zeocin. When the screened recombinant gene engineering bacteria were cultured 72 hours in YPD medium, the expression products were identified by Tricine-SDS-PAGE and purified by HPLC. The biological activity measurement results showed that the minimal inhibitory concentration(MIC) of CC29 to Escherichia coli and Salmonella paratyphus were 25μg/ml; CC34(1) had lower inhibitionon and the MIC to Escherichia coli was 100μg/ml; the MIC of CC34 to Salmonella gallinarum and Staphylococcus aureus were 50μg/ml; six hybrid antimicrobial peptides had no antimicrobial effect on intestine bacteria. As for hemolytic activity, all of the antimicrobial peptides were low, CC29 was the lowest, CC34(1) and CC34 was the higher in which showed the antibacterial activities of them. Considering the antibacterial activity, CC29 and CC34 were more effective on it, so two new hybrid antimicrobial peptides were obtained which had both more effective antibacterial activity and lower hemolytic activity.

Key words: Hybrid antimicrobial peptides    Hemolytic activity    Pichia pastoris    Expression    Antibacterial activity
收稿日期: 2015-08-18 出版日期: 2015-11-19
ZTFLH:  Q789  
基金资助:

国家自然科学基金(31472120)、黑龙江省自然科学基金(C201325)、黑龙江省农垦总局科技攻关项目(HNK125B-12-04)、黑龙江省大学生创新创业训练计划(201510223035)资助项目

通讯作者: 姜宁     E-mail: jiangng_2008@sohu.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘晓明
姜宁
张爱忠
蔡鹏

引用本文:

刘晓明, 姜宁, 张爱忠, 蔡鹏. 杂合抗菌肽在毕赤酵母中的表达及其活性测定[J]. 中国生物工程杂志, 2016, 36(2): 81-89.

LIU Xiao-ming, JIANG Ning, ZHANG Ai-zhong, CAI Peng. Expression of Hybrid Antimicrobial Peptides in Pichia Yeast and Identification of Its Biological Activity. China Biotechnology, 2016, 36(2): 81-89.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160212        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I2/81

[1] Konno K,Rangel M,Oliveira J S,et al. Decoralin,a novel linear cationic alpha-helical peptide from the venom of the solitary eumenine wasp Oreumenes decoratus. Peptides,2007,28(12):2320-2327.
[2] Altincicek B,Linder M,Linder D,et al. Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella. Infection & Immunity,2007,75(1):175-183.
[3] Matsuzaki K. Control of cell selectivity of antimicrobial peptides. Biochimica et Biophysica Acta,2009,1788(8):1687-1692.
[4] 刘莉如,杨开伦,滑静,等. 抗菌肽对蛋用仔公鸡生长性能、免疫指标及空肠组织相关细胞因子基因mRNA表达的影响. 动物营养学报,2012,24(7):1345-1351. Liu L R,Yang K L,Hua J,et al. Antimicrobial peptides:effects on growth performance,immune indices and mRNA expression of related cytokine genes in jejunum of yong roosters for egg production.Chinese Journal of Animal Nutrition,2012,24(7):1345-1351.
[5] Patricia M S. The human cathelicidin hCAP18/LL-37:a multifunctional peptide involved in mycobacterial infections. Peptides,2010,31(9):1791-1798.
[6] 刘耀,夏培元,任建东. 抗菌肽的免疫调节及其在脓毒症中的作用. 免疫学杂志,2013,7:632-636. Liu Y,Xia P Y,Ren J D. The immunoregulatory effects of antimicrobial peptides and its function in sepsis. Immunological Journal,2013,7:632-636.
[7] Boulanger N,Bulet P,Lowenberger C. Antimicrobial peptides in the interactions between insects and flagellate parasites. Trends in Parasitology,2006,22(6):262-268.
[8] Brogden K A. Antimicrobial peptides:pore formers or metabolic inhibitors in bacteria. Nature Reviews Microbiology,2005,3(3):238-250.
[9] Brogden N K,Brogden K A. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents,2011,38(3):217-225.
[10] Yang Q Z,Wang C,Lang L,et al. Design of potent,non-toxic anticancer peptides based on the structure of the antimicrobial peptide,temporin-1CEa. Archives of Pharmacal Research,2013,36(11):1302-1310.
[11] Huang W,Lu L,Shao X,et al. Anti-melanoma activity of hybrid peptide P18 and its mechanism of action. Biotechnology Letters,2010,32(4):463-469.
[12] Vogl T,Glieder A. Regulation of Pichia pastoris promoters and its consequences for protein production. N Biotechnol,2013,30(4):385-404.
[13] Schägger H. Tricine-SDS-PAGE. Nature Protocols,2006,(1):16-22.
[14] Nomura K,Ferrat G,Nakajima T,et al. Induction of morphological changes in model lipid membranes and the mechanism of membrane disruption by a large scorpion-derived pore-forming peptide. Biophys J,2005,89(6):4067-4080.
[15] Kamysz W,Turecka K. Antimicrobial preservative effectiveness of natural peptide antibiotics. Acta Poloniae Pharmaceutica,2005,62(5):341-344.
[16] Wang A L,Wang J Y,Hong J,et al. A novel family of antimicrobial peptides from the skin of Amolops loloensis. Biochimie,2008,90(6):863-867.
[17] Vanhoye D,Bruston F,Nicolas P,et al. Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain. Eur J Biochem,2003,270(9):2068-2081.
[18] Hoang V L,Kim S K. Antimicrobial peptides from marine sources. Current Protein & Peptide Science,2013,14(3):205-211.
[19] Fjell C D,Hiss J A,Hancock R E,et al. Designing antimicrobial peptides:form follows function. Nat Rev Drug Discov,2012,11(1):37-51.
[20] Deslouches B,Steckbeck J D,Craigo J K,et al. Rational design of engineered cationic antimicrobial peptides consisting exclusively of arginine and tryptophan:WR eCAP activity against multidrug-resistant pathogens. Antimicrobial Agents & Chemotherapy,2013,57(6):2511-2521.
[21] Silva T N,Abengózar M N,Fernández-Reyes M,et al. Enhanced leishmanicidal activity of cryptopeptide chimeras from the active N1 domain of bovine lactoferrin. Amino Acids,2012,43(6):2265-2277.
[22] Zhang J,Peng S,Cheng X,et al. Functional analysis of hybrid peptide CAMA-Syn:expression in mammalian cells and antimicrobial potential. Protein Pept Lett,2012,19(10):1076-1081.
[23] Hsu K H,Pei C,Yeh J Y,et al. Production of bioactive human alpha-defensin 5 in Pichia pastoris. J Gen Appl Microbiol,2009,55(5):395-401.
[24] Xu X,Jin F,Yu X,et al. High-level expression of the recombinant hybrid peptide cecropinA(1-8)-magainin2(1-12) with an ubiquitin fusion partner in Escherichia coli. Protein Expr Purif,2007,55(1):175-182.
[25] Randal E,Jian H,Yarbrough D K,et al. Targeted killing of Streptococcus mutans by a pheromone-guided "smart" antimicrobial peptide. Antimicrobial Agents & Chemotherapy,2006,50(11):3651-3657.

[1] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[2] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[3] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[4] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[5] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[6] 刘美琴,高博,焦月盈,李玮,虞结梅,彭向雷,郑妍鹏,付远辉,何金生. 人呼吸道合胞病毒感染的A549细胞中长链非编码RNA表达谱研究[J]. 中国生物工程杂志, 2021, 41(2/3): 7-13.
[7] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[8] 杨茜,栾雨时. sly-miR399在番茄抗晚疫病中的初步探究*[J]. 中国生物工程杂志, 2021, 41(11): 23-31.
[9] 陈素芳,夏明印,曾丽艳,安晓琴,田敏芳,彭建. 抗菌肽Cec4a的重组表达和抗菌活性研究*[J]. 中国生物工程杂志, 2021, 41(10): 12-18.
[10] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[11] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[12] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[13] 邓通,周海胜,吴坚平,杨立荣. 基于分子伴侣策略提高NADPH依赖型醇脱氢酶的异源可溶性表达 *[J]. 中国生物工程杂志, 2020, 40(8): 24-32.
[14] 张潇航,李媛媛,贾敏晅,顾奇. 弹性蛋白样生物材料的制备及性质鉴定 *[J]. 中国生物工程杂志, 2020, 40(8): 33-40.
[15] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.