Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (4): 22-27    
研究报告     
C-myc通过调控BubR1影响食管鳞癌细胞对紫杉醇的敏感性
胡敏, 宋培培, 湛晓琴, 吕自兰, 陈楚, 施琼, 翁亚光
重庆医科大学医学检验系 临床检验诊断学教育部重点实验室 重庆 400016
C-Myc Affects Esophageal Squamous Cancer Sensitivity to Paclitaxel by Regulating BubR1 Expression
HU Min, SONG Pei-pei, ZHAN Xiao-qin, LÜ Zi-lan, CHEN Chu, SHI Qiong, WENG Ya-guang
The Key Laboratory of Laboratory Medical Diagnostics in Ministry of Education, Chongqing Medical University, Chongqing 400016, China
 全文: PDF(1052 KB)   HTML
摘要: 探讨C-Myc与有丝分裂期检查点蛋白BubR1的表达关系和对紫杉醇药物作用的可能影响。用免疫组化方法检测23例食管鳞癌组织标本中C-Myc和BubR1的表达水平,并通过免疫印迹的方法比较3株食管鳞癌细胞株ECA-109,KYSE150和KYSE180中C-Myc和BubR1的表达高低,分析相关性;将人BUB1b基因启动子上游约2000bp片段插入pSEAP2分泌型碱性磷酸酶报告质粒中构建为pSEAP2-BubR1-P2000,分别转染至3株鳞癌细胞内,检测启动子激活效果;在ECA-109细胞内过表达C-Myc后再转染pSEAP2-BubR1-P2000后,检测启动子的激活效果;免疫印迹方法检测C-Myc抑制剂10058-F4对BubR1蛋白表达的影响;通过MTT检测10058-F4干扰C-Myc后ECA-109细胞在梯度紫杉醇浓度下的生存率变化;最后通过DAPI染色观察单用C-Myc抑制剂,单用低浓度紫杉醇(100nM)或联用10058-F4和紫杉醇组的凋亡比例。结果发现在临床食管鳞癌标本和食管鳞癌细胞株中C-Myc和BubR1的表达有相关一致性;C-Myc高表达的细胞株中BubR1启动子活性的激活程度更强,并且过表达C-Myc后能进一步上调启动子活性;C-Myc特异性抑制剂10058-F4可以有效下调BubR1表达,并减低细胞在梯度紫杉醇作用下的细胞生存率。DAPI染色结果显示联用10058-F4和低浓度紫杉醇能明显增加细胞处于有丝分裂期的比率。在食管鳞癌细胞中C-Myc能上调有丝分裂期检查点蛋白BuR1的水平,并与食管癌对紫杉醇的敏感性相关,C-Myc可能通过上调BubR1表达而减低食管鳞癌对紫杉醇的反应。
关键词: C-Myc有丝分裂期检查点蛋白BubR1C-Myc抑制剂10058-F4紫杉醇    
Abstract: To explore the relationship between C-Myc and mitotic checkpoint protein BubR1 expression and possible influence of C-Myc on paclitaxel drug effects. Immunohistochemistry assay was explored to detect C-Myc and BubR1 expression in twenty-three clinical esophageal squamous cancer samples. And Western blot was applied to detect and compare C-Myc and BubR1 expression levels in three esophageal squamous cancer cell lines, ECA-109, KYSE150 and KYSE180. The correlation between C-Myc and BubR1 protein expression was analyzed. About 2000bp fragment upstream human BUB1b gene was cloned and inserted into pSEAP2 promoter reporter vector to construct pSEAP2-BubR1-P2000. Then pSEAP2-BubR1-P2000 was transfected into three cell lines for promoter activities detection (ALP activity). ALP activity was detected in ECA-109 cells both overexpressing C-Myc and transfected pSEAP2-BubR1-P2000. Western blot assay was used to detect the effect of C-Myc inhibitor 10058-F4 on BubR1 expression. MTT assay was applied to detect cell viability under gradient paclitaxel exposure after C-Myc suppression. DAPI staining was explored for apoptotic cell count in C-Myc inhibitor group, low concentration paclitaxel (100nM) group and combination of C-Myc inhibitor and paclitaxel, respectively. The results showed that C-Myc expression positively correlated with BubR1 expression both in clinical esophageal squamous cancer tissues and in esophageal squamous cancer cell lines. Cells with high C-Myc expression showed higher BubR1 promoter activity and overexpression of C-Myc in ECA-109 cells can further enhance BubR1 promoter activity. Specific C-Myc inhibitor 10058-F4 can effectively down-regulate BubR1 expression and decrease cell viability under gradient paclitaxel exposure. DAPI staining result exhibited that combination of 10058-F4 and paclitaxel induced significantly more mitotic cells than single usage of 10058-F4 or paclitaxel. In esophageal squamous cancer cells, C-Myc can regulate mitotic checkpoint protein BubR1 expression and related with paclitaxel sensitivity. C-Myc may reduce esophageal squamous cancer response to paclitaxel by up-regulating BubR1 expression.
Key words: C-Myc    Mitotic checkpoint protein BubR1    C-Myc inhibitor 10058-F4    Pacliaxel
收稿日期: 2012-10-15 出版日期: 2013-04-25
ZTFLH:  Q819  
基金资助: 教育部高等学校博士学科点专项科研基金资助项目(20115503110009)
通讯作者: 翁亚光     E-mail: yaguangweng@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡敏
宋培培
湛晓琴
吕自兰
陈楚
施琼
翁亚光

引用本文:

胡敏, 宋培培, 湛晓琴, 吕自兰, 陈楚, 施琼, 翁亚光. C-myc通过调控BubR1影响食管鳞癌细胞对紫杉醇的敏感性[J]. 中国生物工程杂志, 2013, 33(4): 22-27.

HU Min, SONG Pei-pei, ZHAN Xiao-qin, LÜ Zi-lan, CHEN Chu, SHI Qiong, WENG Ya-guang. C-Myc Affects Esophageal Squamous Cancer Sensitivity to Paclitaxel by Regulating BubR1 Expression. China Biotechnology, 2013, 33(4): 22-27.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I4/22

[1] Yusuf R Z, Duan Z, Lamendola D E, et al. Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation. Curr Cancer Drug, 2003, 3(1): 1-19.
[2] Menssen A, Epanchintsev A, Lodygin D, et al. C-MYC delays prometaphase by direct transactivation of MAD2 and BubR1: identification of mechanisms underlying c-MYC-induced DNA damage and chromosomal instability. Cell Cycle, 2007, 6(3): 339-352.
[3] von Rahden, Stein H J, Puhringer-Oppermann F, et al. c-myc amplification is frequent in esophageal adenocarcinoma and correlated with the upregulation of VEGF-A expression. Neoplasia, 2006, 8(9): 702-707.
[4] Fojo T, Menefee M. Mechanisms of multidrug resistance: the potential role of microtubule-stabilizing agents. Ann Oncol, 2007, 18 (5): 3-8.
[5] Michael A Lampson, Tarun M Kapoor. The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nat Cell Biol, 2004, 7(1): 93-98.
[6] Fang G. Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol Biol Cell, 2002, 13(3): 755-766.
[7] Dai W, Wang Q, Liu T, et al. Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer Res, 2004, 64(2): 440-445.
[8] Hanks S, Coleman K, Reid S, et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet, 2004, 36(11): 1159-1161.
[9] Yamamoto Y, Matsuyama H, Chochi Y, et al. Overexpression of BUBR1 is associated with chromosomal instability in bladder cancer. Cancer Genet Cytogenet, 2007, 174(1): 42-47.
[10] Tanaka K, Mohri Y, Ohi M, et al. Mitotic checkpoint genes, hsMAD2 and BubR1, in oesophageal squamous cancer cells and their association with 5-fluorouracil and cisplatin-based radiochemotherapy. Clin Oncol (R Coll Radiol), 2008, 20(8): 639-646.
[11] Maia A F, Lopes C S, Sunkel C E. BubR1 and CENP-E have antagonistic effects upon the stability of microtubule-kinetochore attachments in Drosophila S2 cell mitosis. Cell Cycle, 2007, 6 (11): 1367-1378.
[12] Shin H J, Baek K H, Jeon A H, et al. Dual roles of human BubR1, a mitotic checkpoint kinase, in the monitoring of chromosomal instability. Cancer Cell, 2003, 4(6): 483-497.
[13] Wang W, Xue L, Wang P. Prognostic value of beta-catenin, c-myc, and cyclin D1 expressions in patients with esophageal squamous cell carcinoma. Med Oncol, 2011, 28(1): 163-169.
[1] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[2] 李金晶,许菲,季艳伟,舒梅,涂追,付金衡. 抗c-Myc标签纳米抗体的筛选与应用[J]. 中国生物工程杂志, 2018, 38(2): 61-67.
[3] 项丽, 王申, 田海山, 钟美娟, 周汝滨, 曹定国, 梁朋, 张国平, 何滔, 庞实锋. 小鼠c-Myc基因的克隆表达及其纯化[J]. 中国生物工程杂志, 2017, 37(2): 20-25.
[4] 王颖芳, 韩彬, 李钟, 贾真, 陈艳芬, 胡旭光, 杨泽民. 南方红豆杉毛状根诱导体系的建立及毛状根中 紫杉醇的分离纯化研究[J]. 中国生物工程杂志, 2012, 32(07): 49-52.
[5] 周玉洁,程龙,陶文沂,周红. 美丽镰刀菌与固定化东北红豆杉的共生培养[J]. 中国生物工程杂志, 2008, 28(8): 84-90.
[6] 代文亮,陶文沂,程龙. 响应面法在紫杉醇产生菌发酵前体优化中的应用[J]. 中国生物工程杂志, 2007, 27(11): 66-72.
[7] 赵凯, 周东坡, 平文祥, 邹积宏, 马玺. 紫杉醇产生菌Nodulisporium sylviforme原生质体诱变研究[J]. 中国生物工程杂志, 2004, 24(9): 63-68.
[8] 骆建新, 陈永勤, 刘占杰. 紫杉醇生物合成相关酶基因的克隆与表达[J]. 中国生物工程杂志, 2003, 23(6): 36-40.
[9] 黄新, 黄璐琦, 邱德有. 紫杉醇生物合成途径中相关酶的研究进展[J]. 中国生物工程杂志, 2002, 22(5): 27-33.
[10] 甘烦远, 沈月毛, 郝小江. 紫杉醇生物合成的研究进展[J]. 中国生物工程杂志, 2000, 20(1): 52-56.
[11] 罗明典. 世界生物技术领域取得重要进展[J]. 中国生物工程杂志, 1994, 14(3): 16-19.
[12] 梁敬钰. 国外紫杉醇研究进展[J]. 中国生物工程杂志, 1993, 13(4): 19-20.
[13] 徐家立. 努力增加抗癌药紫杉醇的供给[J]. 中国生物工程杂志, 1992, 12(5): 49-51.
[14] 徐家立. 紫杉醇研究开发动态[J]. 中国生物工程杂志, 1992, 12(1): 48-48.