Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (2): 61-67    DOI: 10.13523/j.cb.20180209
技术与方法     
抗c-Myc标签纳米抗体的筛选与应用
李金晶1,2,许菲1,2,季艳伟2,3,舒梅2,3,涂追3(),付金衡2()
1 南昌大学生命科学学院 南昌 330031
2 中德联合研究院 南昌 330047
3 食品科学与技术国家重点实验室 南昌 330047
Biopanning of Anti c-Myc-tag Nanobodies and Its Application for Bioimaging
Jin-jing LI1,2,Fei XU1,2,Yan-wei JI2,3,Mei SHU2,3,Zhui TU3(),Jin-heng FU2()
1 Institute of Life Sciences, Nanchang University, Nanchang 330031, China
2 Sino-Germany Joint Research Institute,Nanchang University,Nanchang 330047, China
3 State Key Laboratory of Food Science and Technology, Nanchang University,Nanchang 330047, China
 全文: PDF(902 KB)   HTML
摘要:

目的: 以c-Myc-GST蛋白为靶分子,从纳米抗体噬菌体展示免疫文库中筛选能够特异性识别c-Myc标签(EQKLISEEDL)的纳米抗体。方法: 采用固相淘选技术,筛选出能与c-Myc标签特异性结合的噬菌体,phage-ELISA鉴定阳性克隆并测序,通过基因重组技术将阳性噬菌体编码的纳米抗体基因克隆至原核表达载体pET25b(+),再转化至大肠杆菌Rosetta(DE3),IPTG诱导表达,SDS-PAGE分析重组蛋白表达情况。采用间接ELISA和量子点免疫荧光法验证纳米抗体的结合活性和特异性。结果: 通过4轮固相淘选,具有结合活性的噬菌体克隆得到了有效富集,回收率提高了145倍,阳性率从20.83%提高至85.4%。将phage-ELISA鉴定显色值高的两个纳米抗体A25和A26分别进行了重组表达,SDS-PAGE结果显示均为可溶性表达,表达量为60 mg/L。间接ELISA结果表明重组蛋白A25和A26都能够识别c-Myc标签,量子点免疫荧光法验证得到纳米抗体A25能够对SP2/0细胞内的c-Myc蛋白进行检测。结论: 成功地筛选出与c-Myc标签结合的纳米抗体噬菌体克隆,构建了两个抗c-Myc标签纳米抗体的原核表达载体并实现了可溶性表达,为检测胞内c-Myc蛋白奠定了基础。

关键词: 纳米抗体c-Myc噬菌体展示ELISA量子点    
Abstract:

Objective: Using c-Myc-GST protein as target molecule, nanobodies that can specifically recognize c-Myc tags (EQKLISEEDL) were screened from phage displayed immune libraries.Methods: Screening of phages specific bingding c-Myc-tag by solid-phase biopanning technology. Positive clones were identified by phage ELISA and then sequenced. The DNA fragment that coded positive nanobody phages were subclone to pET25b(+)vector ,the recombinant expression vector transformed into E.coli Rosetta (DE3) cells for expression under induction of IPTG. SDS-PAGE was used to analysis of recombinant protein expression. Finally, the binding activity and specificity of the nanobodies were confirmed by indirect ELISA and quantum dot immunofluorescence technology. Result: After four cycles solid-phase biopanning, phage with binding activity clones were effectively enriched, the recovery rate was improved by 145 times and positive rate increased from 20.83% to 85.4%. The nanobodies A25 and A26 with high OD450 in phage-ELISA were recombinantly expressed , the production yield was 60 mg/L. Indirect ELISA results indicate that the recombinant proteins A25 and A26 can recognize the c-Myc-tag. Quantum dot immunofluorescence technology results showed that A25 could detect c-Myc protein in SP2/0 cells.Conclusion: Anti-c-Myc tagged nanobodies were successfully screened and two prokaryotic expression vector were constructed, the recombinant proteins achieved souble expression. And these laid the foundation for the detection of intracellular c-Myc protein.

Key words: Nanobody    c-Myc    Phage display    ELISA    Quantum dot
收稿日期: 2017-08-02 出版日期: 2018-03-21
ZTFLH:  Q819  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李金晶
许菲
季艳伟
舒梅
涂追
付金衡

引用本文:

李金晶,许菲,季艳伟,舒梅,涂追,付金衡. 抗c-Myc标签纳米抗体的筛选与应用[J]. 中国生物工程杂志, 2018, 38(2): 61-67.

Jin-jing LI,Fei XU,Yan-wei JI,Mei SHU,Zhui TU,Jin-heng FU. Biopanning of Anti c-Myc-tag Nanobodies and Its Application for Bioimaging. China Biotechnology, 2018, 38(2): 61-67.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180209        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I2/61

轮次 Myc-GST
包被浓度
(μg/ml)
噬菌体
投入量
(cfu)
噬菌体
洗脱量
(cfu)
回收率 富集度
1 100 1.0×1011 7.1×105 7.1×10-6 -
2 70 1.0×1011 8.7×106 8.7×10-5 12.25
3 50 1.0×1011 5.3×107 5.3×10-4 6.09
4 30 1.0×1011 1.0×108 1.0×10-3 1.94
表1  亲和淘选对噬菌体的富集
图1  各轮phage-ELISA鉴定特异性阳性克隆结果
图2  间接phage-ELISA测定阳性噬菌体克隆
图3  A25、A26重组载体菌落PCR鉴定
图4  纳米抗体氨基酸序列比对
图5  纳米抗体SDS-PAGE分析
图6  间接ELISA测定目的蛋白
图7  QDs-SA标记小鼠SP2/0细胞显微成像
[1] Bayliss R, Burgess S G, Leen E , et al. A moving target: structure and disorder in pursuit of Myc inhibitors. Biochemical Society Transactions, 2017,45(3):709-717.
doi: 10.1042/BST20160328 pmid: 28620032
[2] Battey J, Moulding C, Taub R , et al. The human c-myc-oncogene-structural consequences of translocation into IgH locus in burkitt-lymphoma. Cell, 1983,34(3):779-787.
doi: 10.1016/0092-8674(83)90534-2 pmid: 6414718
[3] Davis A C, Wims M, Spotts G D , et al. A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes & Development, 1993,7(4):671-682.
[4] Khaleghian M, Shakoori A, Razavi A E , et al. Relationship of amplification and expression of the C-MYC gene with survival among gastric cancer patients. Asian Pacific Journal of Cancer Prevention Apjcp, 2015,16(16):7061.
doi: 10.7314/APJCP.2015.16.16.7061 pmid: 26514491
[5] Incassati A, Chandramouli A, Eelkema R , et al. Key signaling nodes in mammary gland development and cancer: β-catenin. Breast Cancer Research Bcr, 2010,12(6):213.
doi: 10.1186/bcr2723 pmid: 21067528
[6] Pelengaris S, Khan M , Evan G. c-MYC: More than just a matter of life and death. Nature Reviews Cancer, 2002,2(10):764-776.
doi: 10.1038/nrc904
[7] Yang X H, Tang F, Shin J , et al. A c-Myc-regulated stem cell-like signature in high-risk neuroblastoma: A systematic discovery (Target neuroblastoma ESC-like signature). Scientific Reports, 2017,7(1):41.
doi: 10.1038/s41598-017-00122-x pmid: 28246384
[8] Haberl S, Haferlach T, Stengel A , et al. MYC rearranged B-cell neoplasms: Impact of genetics on classification. Cancer Genetics, 2016,209(10):431-439.
doi: 10.1016/j.cancergen.2016.08.007 pmid: 27810071
[9] Szabo A G, Gang A O, Pedersen M O , et al. Overexpression of c-myc is associated with adverse clinical features and worse overall survival in multiple myeloma. Leukemia & Lymphoma, 2016,57(11):2526-2534.
doi: 10.1080/10428194.2016.1187275 pmid: 27243588
[10] Wang W, Deng J, Wang Q , et al. Synergistic role of Cul1 and c-Myc: Prognostic and predictive biomarkers in colorectal cancer. Oncology Reports, 2017,38(1):245-252.
doi: 10.3892/or.2017.5671 pmid: 28560438
[11] Li P, Shi J X, Dai L P , et al. Serum anti-MDM2 and anti-c-Myc autoantibodies as biomarkers in the early detection of lung cancer. Oncoimmunology, 2016,5(5):11.
doi: 10.1080/2162402X.2016.1138200 pmid: 27467958
[12] Zhou S L, Yue W B, Fan Z M , et al. Autoantibody detection to tumor-associated antigens of P53, IMP1, P16, cyclin B1, P62, C-myc, Survivn, and Koc for the screening of high-risk subjects and early detection of esophageal squamous cell carcinoma. Diseases of the Esophagus, 2014,27(8):790-797.
doi: 10.1111/dote.2014.27.issue-8
[13] He J L, Tian Y F, Cao Z , et al. An electrochemical immunosensor based on gold nanoparticle tags for picomolar detection of c-Myc oncoprotein. Sensors and Actuators B -Chemical, 2013,181(2):835-841.
doi: 10.1016/j.snb.2013.02.063
[14] Beghein E, Gettemans J . Nanobody technology: A versatile toolkit for microscopic imaging, protein-protein interaction analysis, and protein function exploration. Frontiers in Immunology, 2017,8:771-774.
doi: 10.3389/fimmu.2017.00771 pmid: 28725224
[15] Wang H, Meng A M, Li S H , et al. A nanobody targeting carcinoembryonic antigen as a promising molecular probe for non-small cell lung cancer. Molecular Medicine Reports, 2017,16(1):625-630.
doi: 10.3892/mmr.2017.6677 pmid: 5482067
[16] Hussack G, Hirama T, Ding W , et al. Engineered single-domain antibodies with high protease resistance and thermal stability. Plos One, 2011,6(11):e28218.
doi: 10.1371/journal.pone.0028218 pmid: 3227653
[17] Saerens D, Conrath K, Govaert J , et al. Disulfide bond introduction for general stabilization of immunoglobulin heavy-chain variable domains. Journal of Molecular Biology, 2008,377(2):478-488.
doi: 10.1016/j.jmb.2008.01.022 pmid: 18262543
[18] 刘夏, 许杨, 涂追 , 等. 抗AFB-1单域重链抗体文库淘选方法的研究. 食品与生物技术学报, 2011,30(6):950-955.
Liu X, Xu Y, Tu Z , et al. Research on panning methods of single-domain heavy-chain antibody fragments for aftatoxin B-1 from non-immune library. J of Food Science and Biotechnology, 2011,30(6):950-955.
[19] Muyldermans S, Baral T N, Retamozzo V C , et al. Camelid immunoglobulins and nanobody technology. Veterinary Immunology & Immunopathology, 2009,128(1-3):178.
doi: 10.1016/j.vetimm.2008.10.299 pmid: 19026455
[20] Rahbarizadeh F, Ahmadvand D, Sharifzadeh Z . Nanobody; an old concept and new vehicle for immunotargeting. Immunological Investigations, 2011,40(3):299.
doi: 10.3109/08820139.2010.542228 pmid: 21244216
[21] Detalle L, Stohr T, PAlomo C , et al. Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection. Antimicrobial Agents & Chemotherapy, 2016,92(1):6.
doi: 10.1128/AAC.01802-15 pmid: 4704182
[22] Keyaerts M, Xavier C, Heemskerk J , et al. Phase I study of 68Ga-HER2-Nanobody for PET/CT assessment of HER2 expression in breast carcinoma. Journal of Nuclear Medicine, 2015,57(1):27.
doi: 10.2967/jnumed.115.162024 pmid: 26449837
[23] Meyer T, Muyldermans S, Depicker A . Nanobody-based products as research and diagnostic tools. Trends in Biotechnology, 2014,32(5):263.
doi: 10.1016/j.tibtech.2014.03.001 pmid: 24698358
[24] Sun B C, Zhao S W, Liu D G . Expression and implication of Ki67 and P53 protein in laryngeal carcinoma. Beijing Medical Journal, 2007,29(10):577-579.
[25] Oliveira S, Heukers R, Sornkom J , et al. Targeting tumors with nanobodies for cancer imaging and therapy. Journal of Controlled Release Official Journal of the Controlled Release Society, 2013,172(3):607-617.
doi: 10.1016/j.jconrel.2013.08.298 pmid: 24035975
[26] Jopling H M, Odell A F, Pellet-Many C , et al. Endosome-to-plasma membrane recycling of VEGFR2 receptor tyrosine kinase eegulates endothelial function and blood vessel formation. Cells, 2014,3(2):363-385.
doi: 10.3390/cells3020363 pmid: 4092869
[27] Liu X, Xu Y, Wan D B , et al. Development of a nanobody-alkaline phosphatase fusion protein and its application in a highly sensitive direct competitive fluorescence enzyme immunoassay for detection of ochratoxin A in Cereal. Analytical Chemistry, 2015,87(2):1387-1394.
doi: 10.1021/ac504305z pmid: 25531426
[1] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[2] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[3] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[4] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[5] 梅雅贤,王玥,罗文新. 纳米抗体在传染病的预防、诊断和治疗中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 24-34.
[6] 陈秀秀,吴成林,周丽君. 人源抗体制备及临床应用研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 90-96.
[7] 庞倩,陈晶,王小红,王佳. 基于噬菌体展示技术抗黄曲霉毒素B1单链抗体的筛选及其蛋白结构分析 *[J]. 中国生物工程杂志, 2018, 38(12): 41-48.
[8] 方媛,徐广贤,王羡,王红霞,潘俊斐. 双峰驼源天然噬菌体纳米抗体展示库的构建及抗GDH纳米抗体筛选 *[J]. 中国生物工程杂志, 2018, 38(12): 49-56.
[9] 郎巧利,余琳,何麒麟,葛良鹏,杨希. 高效构建卵清白蛋白scFv噬菌体文库及其筛选 *[J]. 中国生物工程杂志, 2018, 38(11): 25-31.
[10] 李丹, 黄鹤. 纳米抗体异源表达的研究进展[J]. 中国生物工程杂志, 2017, 37(8): 84-95.
[11] 胡昌武, 谢君, 朱乃硕. 7肽和12肽两种M13噬菌体展示库筛选肿瘤坏死因子alpha拮抗肽的比较[J]. 中国生物工程杂志, 2017, 37(5): 1-8.
[12] 吴孟玲, 周嘉旺, 杜军. Nodal检测双单抗夹心ELISA法建立及应用[J]. 中国生物工程杂志, 2017, 37(3): 51-57.
[13] 项丽, 王申, 田海山, 钟美娟, 周汝滨, 曹定国, 梁朋, 张国平, 何滔, 庞实锋. 小鼠c-Myc基因的克隆表达及其纯化[J]. 中国生物工程杂志, 2017, 37(2): 20-25.
[14] 刘俊伟, 常瑞恒, 回鹏, 董士尚, 王金凤, 孙波, 杨诚. 抗埃博拉病毒核蛋白抗体的制备与双抗夹心ELISA检测方法的建立[J]. 中国生物工程杂志, 2017, 37(10): 53-59.
[15] 庞倩, 马榆, 李诚, 刘韫滔, 刘书亮, 王小红, 刘爱平. 基于CDR2和CDR3区随机突变筛选抗黄曲霉毒素B1单域重链抗体的研究[J]. 中国生物工程杂志, 2016, 36(7): 21-26.