Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (4): 28-33    
研究报告     
毕赤酵母STE13基因敲除对GGH表达及其生物活性的影响
路庆鹏, 许正宏, 史劲松, 窦文芳
江南大学药学院制药工程实验室 无锡 214122
The Disruption of STE13 Gene in Pichia pastoris Improves the Expression and Bioactivity of GGH
LU Qing-peng, XU Zhen-hong, SI Jin-song, DOU Wen-fang
Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
 全文: PDF(670 KB)   HTML
摘要: 目的:重组毕赤酵母GS115/pPIC9K-GGH表达的人胰高血糖素样肽-1-人血清白蛋白融合蛋白[(GLP-1 A2G )2-HSA,GGH]的细胞活性测评结果显示生物活性较低,这可能与其表达过程中蛋白降解有一定关联。通过对毕赤酵母GS115 STE13 基因的敲除,获得一株完整表达蛋白GGH的毕赤酵母宿主,并进一步提高其表达产物GGH的生物活性。方法:采用基于PCR技术介导的Cre-Loxp系统重组技术成功敲除宿主菌GS115的STE13 基因,得到一株STE13 缺陷型菌株GS115/D13,并通过细胞活性测评系统检测GS115/D13表达产物GGH的生物活性。结果:通过对STE13 基因缺陷型菌株GS115/D13与出发菌株GS115/W发酵表达对比,显示GS115/D13菌株表达融合蛋白GGH生物活性有明显提升,且表达量提高了25.8%,两菌株生长无明显差异。结论:STE13 基因的敲除成功缓解了GGH表达过程中的降解问题,并相对出发菌株GS115/W大幅度提高了蛋白生物活性。
关键词: 毕赤酵母GLP-1STE13生物活性    
Abstract: Objective: It is barely found that the bioactivity of recombination protein (GLP-1 A2G ) 2 -HSA (GGH) by the cell bioactivity evaluation that related to its protein degradation, which expressed in methylotrophic yeast Pichia pastoris GS115 strain. Therefore, A new P.pastoris GS115 strain with STE13 gene disruption was engineered, helped for the expression of intact GGH, and the bioactivity can be further improved. Methods: The STE13 gene deficient strain GS115/D13 was constructed by the disruption of the P.pastoris homolog of the Saccharomyces cereviaiae dipeptidyl aminopeptidase (STE13 ) gene in Pichia genome by the Cre-Loxp recombination system based on the fusion PCR technology, and the bioactivity of GGH estimated by the cell biological evaluation methods. Results: The recombinant strain GS115/D13 showed the protein degradation much more relieved, apparent bioactivity improved and the yield of about 25.8% increased compared with that in the wild-type strain (GS115/W). Conclusion: The results suggested that STE13 gene disruption offered an expression host for the product of much more intact GGH and helped improve the protein bioactivity.
Key words: Pichia pastoris    GLP-1    STE13    Bioactivity
收稿日期: 2013-01-14 出版日期: 2013-04-25
ZTFLH:  Q819  
基金资助: 国家自然科学基金(31000016);江苏省科技支撑计划(BE2009629)
通讯作者: 窦文芳     E-mail: douwenfang@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
路庆鹏
许正宏
史劲松
窦文芳

引用本文:

路庆鹏, 许正宏, 史劲松, 窦文芳. 毕赤酵母STE13基因敲除对GGH表达及其生物活性的影响[J]. 中国生物工程杂志, 2013, 33(4): 28-33.

LU Qing-peng, XU Zhen-hong, SI Jin-song, DOU Wen-fang. The Disruption of STE13 Gene in Pichia pastoris Improves the Expression and Bioactivity of GGH. China Biotechnology, 2013, 33(4): 28-33.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I4/28

[1] Zander M, Madsbad S, Madsen J L, et al. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet, 2002, 359(9309): 824-830.
[2] Turton M D, O'Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature, 1996, 379(4): 69-72.
[3] Deacon C F, Johnsen A H, Holst J J. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. The Journal of Clinical Endocrinology and Metabolism, 1995, 80(3): 952-957.
[4] Dou W F, Lei J Y, Zhang L F, et al. Expression, purification, and characterization of recombinant human serum albumin fusion protein with two human glucagon-like peptide-1 mutants in Pichia pastoris. Protein Expression and Purification, 2008, 61(1): 45-49.
[5] Prabha L, Govindappa N, Adhikary L, et al. Identification of the dipeptidyl aminopeptidase responsible for N-terminal clipping of recombinant Exendin-4 precursor expressed in Pichia pastoris. Protein Expression and Purification, 2009, 64(2): 155-161.
[6] 关波, 金坚, 李华钟. 改良毕赤酵母分泌表达外源蛋白能力的研究进展. 微生物学报,2011, 51(7): 851-857. Guan B, Jin J, Li H Z. Genetic engineering of Pichia pastoris expression system for improved secretion of heterologous protein: a review. Acta Microbiologica Sinica, 2011,51(7):851-857.
[7] De Schutter K, Lin Y C, Tiels P, et al. Genome sequence of the recombinant protein production host Pichia pastoris. Nature Biotechnology, 2009, 27(6): 561-566.
[8] Yao X Q, Zhao H L, Xue C, et al. Degradation of HSA-AX15(R13K) when expressed in Pichia pastoris can be reduced via the disruption of YPS1 gene in this yeast. J Biotechnol, 2009, 139(2): 131-136.
[9] Boehm T, Pirie-Shepherd S, Trinh L B, et al. Disruption of the KEX1 gene in Pichia pastoris allows expression of full-length murine and human endostatin. Yeast, 1999, 15(7): 563-572.
[10] Shevchuk N A, Bryksin A V, Nusinovich Y A, et al. Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Research, 2004, 32(2): e19.
[11] Pan R Q, Zhang J, Shen W L, et al. Sequential deletion of Pichia pastoris genes by a self-excisable cassette. Fems Yeast Research, 2011, 11(3): 292-298.
[12] Lin-Cereghino J, Wong W W, Xiong S, et al. Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. Biotechniques, 2005, 38(1): 44-45.
[13] Baggio L L, Huang Q L, Brown T J, et al. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (Albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes, 2004, 53: 2492-2500.
[14] Zhou X S, Zhang Y X. Decrease of proteolytic degradation of recombinant hirudin produced by Pichia pastoris by controlling the specific growth rate. Biotechnology Letters, 2002, 24(17): 1449-1453.
[15] Zhang Y W, Liu R J, Wu X Y. The proteolytic systems and heterologous proteins degradation in the methylotrophic yeast Pichia pastoris. Annals of Microbiology, 2007, 57(4): 553-560.
[16] Zhang Q F, Ding F, Xue X Y, et al. Changing the N-terminal sequence protects recombinant Plasmodium falciparum circumsporozoite protein from degradation in Pichia pastoris. Applied Microbiology and Biotechnology, 2008, 78(1): 139-145.
[1] 张虎,刘镇洲,陈家敏,高保燕,张成武. 利用海洋硅藻生产生物活性物质研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 81-90.
[2] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[3] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[4] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[5] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.
[6] 田园,李艳玲. 基于重组毕赤酵母的fusaruside生物合成 *[J]. 中国生物工程杂志, 2019, 39(7): 8-14.
[7] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[8] 严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.
[9] 姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.
[10] 张文玉,魏东升,钱江潮. 共表达PDI1MDH1HAC1基因对重组毕赤酵母分泌表达葡糖氧化酶的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 24-33.
[11] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[12] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[13] 陈英,肖海鹏,张晓焰,龚庆伟,马利,李文佳,陈小锋. GLP-1-IgG4-Fc融合蛋白的表达与鉴定 *[J]. 中国生物工程杂志, 2018, 38(7): 58-66.
[14] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.
[15] 张潘潘,许延吉,王之可,刘晓,李素霞. 重组猪胰蛋白酶及其R122位点突变体在毕赤酵母中的高效表达及其性质研究[J]. 中国生物工程杂志, 2018, 38(5): 56-65.