Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (11): 90-94    
综述     
Tet system的调控原理及其在转基因小鼠模型上的应用
张景锋, 郭欣政, 卫恒习, 李莉, 张守全
华南农业大学动物科学学院 广东省农业动物基因组学与分子育种重点实验室 广州 510642
Research Progress of the Principal and Application on Transgenic Mouse Models of Tetracycline Inducible Expression System
ZHANG Jing-feng, GUO Xin-zheng, WEI Heng-xi, LI Li, ZHANG Shou-quan
Agricultural Animal Genomics and Molecular Breeding Key Lab of Guangdong Province, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
 全文: PDF(535 KB)   HTML
摘要:

基因表达的调控是分子生物学研究的一个重要问题,也是基因治疗和基因功能研究的重要手段。诱导性基因表达系统可以从时间上调控基因的表达,是基因治疗和基因功能研究的重要工具之一。其中,四环素诱导基因表达系统(tetracycline inducible expression system,Tet system)是应用最广泛的一种,它可以在时间和空间上对基因进行严谨和高效地诱导表达。基于该系统获得了不同用途的转基因动物,这些模型动物的建立为研究特定基因的功能及其在疾病发生中的作用打下了实验基础。现就四环素诱导表达系统的原理和在小鼠模型上的研究应用做一综述。

关键词: TetsystemTet-off系统Tet-on系统转基因小鼠模型    
Abstract:

The regulation of gene expression is an important problem in molecular biology research, and also an important tool on gene therapy and gene function research. Inducible gene expression system can regulate the expressive time of genes, which is one of the most important tools on gene function. And tetracycline inducible expression system is widely applicated among them, which has been used on transgenic animal models. The establishment of the animal model provides the experimental basis for gene function research. The principal and application tetracycline inducible expression system on mouse models are reviewed.

Key words: Tet system    Tet-off system    Tet-on system    Transgenic mouse models
收稿日期: 2011-05-11 出版日期: 2011-11-25
ZTFLH:  Q78  
基金资助:

国家"973"计划资助项目(2011CB944203, 2011CB944202)

通讯作者: 张守全     E-mail: sqzhang@scau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张景锋, 郭欣政, 卫恒习, 李莉, 张守全. Tet system的调控原理及其在转基因小鼠模型上的应用[J]. 中国生物工程杂志, 2011, 31(11): 90-94.

ZHANG Jing-feng, GUO Xin-zheng, WEI Heng-xi, LI Li, ZHANG Shou-quan. Research Progress of the Principal and Application on Transgenic Mouse Models of Tetracycline Inducible Expression System. China Biotechnology, 2011, 31(11): 90-94.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I11/90


[1] Pelham H R. A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene. Cell, 1982,30(2):517-528.

[2] Joshi B, Ordonez-Ercan D, Dasgupta P,et al. Induction of human metallothionein 1G promoter by VEGF and heavy metals: differential involvement of E2F and metal transcription factors. Oncogene,2005,24(13):2204-2217.

[3] Nikolic D B, Samardzic J T, Bratic A M, et al. Buckwheat (Fagopyrum esculentum Moench) FeMT3 gene in heavy metal stress: protective role of the protein and inducibility of the promoter region under Cu(2+) and Cd(2+) treatments. J Agric Food Chem, 2010,24;58(6):3488-3494.

[4] McTavish N, Getty J, Burchell A, et al. Glucocorticoids can activate the alpha-ENaC gene promoter independently of SGK1. Biochem J, 2009, 25;423(2):189-197.

[5] Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A, 1992, 89(12):5547-5551.

[6] Gossen M, Freundlieb S, Bender G, et al. Transcriptional activation by tetracyclines in mammalian cells. Science, 1995,268(5218):1766-1769.

[7] Schultze N, Burki Y, Lang Y, et al. Efficient control of gene expression by single step integration of the tetracycline system in transgenic mice. Nat Biotechnol, 1996, 14(4):499-503.

[8] Soulier S, Stinnakre M G, Lepourry L, et al. Use of doxycycline-controlled gene expression to reversibly alter milk-protein composition in transgenic mice. Eur J Biochem, 1999,260(2):533-539.

[9] Kistner A, Gossen M, Zimmermann F, et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci U S A, 1996,93(20):10933-10938.

[10] Diamond I, Owolabi T, Marco M, et al. Conditional gene expression in the epidermis of transgenic mice using the tetracycline-regulated transactivators tTA and rTA linked to the keratin 5 promoter. J Invest Dermatol, 2000,115(5):788-794.

[11] Wang H, Chae K R, Shin D H, et al. Xenobiotic response in humanized double transgenic mice expressing tetracycline-controlled transactivator and human CYP1B1. Arch Biochem Biophys, 2001,395(1):32-40.

[12] Boy J, Leergaard T B, Schmidt T, et al. Expression mapping of tetracycline-responsive prion protein promoter: digital atlasing for generating cell-specific disease models. Neuroimage, 2006,33(2):449-462.

[13] Zhou H, Huang C, Yang M, et al. Developing tTA transgenic rats for inducible and reversible gene expression. Int J Biol Sci, 2009,5(2):171-181.

[14] Odeh F, Leergaard T B, Boy J, et al. Atlas of transgenic Tet-Off Ca2+/calmodulin-dependent protein kinase II and prion protein promoter activity in the mouse brain. NeuroImage, 2011,2603-2611.

[15] Perl A K, Tichelaar J W, Whitsett J A. Conditional gene expression in the respiratory epithelium of the mouse. Transgenic Res, 2002,11(1):21-29.

[16] Zhu Z, Zheng T, Lee C G, et al. Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Semin Cell Dev Biol, 2002,13(2):121-128.

[17] Shigehara T, Zaragoza C, Kitiyakara C, et al. Inducible podocyte-specific gene expression in transgenic mice. J Am Soc Nephrol, 2003,14(8):1998-2003.

[18] Gallagher A R, Schnig K, Brown N, et al. Use of the tetracycline system for inducible protein synthesis in the kidney. J Am Soc Nephrol, 2003, 14(8):2042-2051.

[19] Grill M A, Bales M A, Fought A N, et al. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice. Transgenic Res, 2003, 12(1):33-43.

[20] Hayashi M, Hayashi Y, Liu C Y, et al. Over expression of FGF7 enhances cell proliferation but fails to cause pathology in corneal epithelium of Kerapr-rtTA/FGF7 bitransgenic mice. Mol Vis, 2005,11:201-207.

[21] Dumortier J, Schnig K, Oberwinkler H, et al. Liver-specific expression of interferon gamma following adenoviral gene transfer controls hepatitis B virus replication in mice. Gene Ther, 2005,12(8):668-677.

[22] Shen Q, Sun Q, Wei X, et al.Generation and characterization of islet cell tumor in pTet-on/pTRE-SV40Tag double-transgenic mice model. J Biosci Bioeng, 2007, 104(1):14-21.

[23] Song X, Guo Y, Duo S, et al. A mouse model of inducible liver injury caused by tet-on regulated urokinase for studies of hepatocyte transplantation. Am J Pathol, 2009,175(5):1975-1983.

[24] Zhou H, Liu Y, He F, et al. Temporally and spatially controllable gene expression and knockout in mouse urothelium. Am J Physiol Renal Physiol, 2010,299(2):F387-F395.

[25] Sheng Y, Lin C C, Yue J, et al. Generation and characterization of a Tet-On(rtTA-M2) transgenic rat. BMC Developmental Biology, 2010, 10:17.

[26] Zhu Z, Ma B, Homer R J, et al. Use of the tetracycline-controlled transcriptional silencer (tTS) to eliminate transgene leak in inducible overexpression transgenic mice. J Biol Chem, 2001,276(27):25222-25229.

[27] Uchida S, Sakai S, Furuichi T, et al. Tight regulation of transgene expression by tetracycline-dependent activator and repressor in brain. Genes Brain Behav, 2006,5(1):96-106.

[28] Hayakawa T, Yusa K, Kouno M, et al. Blooms syndrome genedeficient phenotype in mouse primary cells induced by a modified tetracycline-controlled trans-silencer. Gene, 2006, 369:80-89.

[29] Yusa K, Horie K, Kondoh G, et al. Genome-wide phenotype analysis in ES cells by regulated disruption of Blooms syndrome gene. Nature,2004, 429(6994):896-899.

[1] 温赛, 杨建国. 地衣芽孢杆菌原生质体电转化方法的研究[J]. 中国生物工程杂志, 2015, 35(7): 76-82.
[2] 高珊, 陈炜, 于磊, 李静, 孙彩显, 高杰, 刘牧. 小鼠和大鼠的胚胎培养基及若干相关问题[J]. 中国生物工程杂志, 2015, 35(7): 83-93.
[3] 徐登安, 赵纯钦, 张赤红, 陈静. 大麦水孔蛋白基因HvTIP2;1及其启动子的表达特性分析[J]. 中国生物工程杂志, 2015, 35(7): 15-21.
[4] 高越, 檀硕, 任兆瑞, 张敬之. 原位染色检测慢病毒载体转录通读方法的建立[J]. 中国生物工程杂志, 2015, 35(5): 55-60.
[5] 张旭宁, 权春善, 廖颖玲, 柳科欢, 熊文, 范圣第. 金黄色葡萄球菌双组分系统反应调节蛋白AgrA的原核表达、纯化及活性鉴定[J]. 中国生物工程杂志, 2015, 35(5): 32-40.
[6] 郭兆来, 白学贵, 严金平, 陈宣钦, 李昆志, 徐慧妮. 菠菜SoHb基因的原核表达及功能分析[J]. 中国生物工程杂志, 2015, 35(4): 54-59.
[7] 房战, 徐美娟, 饶志明, 满在伟, 许正宏, 耿燕, 陆茂林. 过量表达钝齿棒杆菌柠檬酸合酶编码基因prpC2对L-精氨酸合成的影响[J]. 中国生物工程杂志, 2015, 35(3): 49-55.
[8] 蒋延超, 蒋世云, 傅凤鸣, 黄凯, 康星欣, 徐丹. 透明质酸生物合成途径及基因工程研究进展[J]. 中国生物工程杂志, 2015, 35(1): 104-110.
[9] 艾君, 姜潮, 刘敏, 王晓艳, 田海山, 李校堃. 拟南芥双油体蛋白融合表达KGF-2及其生物学活性研究[J]. 中国生物工程杂志, 2015, 35(1): 21-26.
[10] 柴玉琼, 张玉红, 韩凝, 朱睦元. 植物维生素E基因工程研究进展[J]. 中国生物工程杂志, 2014, 34(11): 100-106.
[11] 吴花拉, 张严玲, 罗旭, 葛飞, 潘光堂, 沈亚欧. 位点特异性重组系统及其在植物转基因研究中的应用[J]. 中国生物工程杂志, 2014, 34(11): 107-118.
[12] 马义, 罗天杰, 洪岸. 新型重组VPAC2激动剂RD的制备及促进胰岛素功能的分子机制[J]. 中国生物工程杂志, 2014, 34(11): 60-66.
[13] 郝梓凯, 李丕武, 郝昭程, 陈利飞. 敲除frdB基因对大肠杆菌厌氧混合酸发酵的影响[J]. 中国生物工程杂志, 2014, 34(11): 67-75.
[14] 李玉强, 朱志图, 王巍, 李谌, 徐娜, 王钰, 李男, 孙宏治. RNA干扰NUP88基因对人乳腺癌MCF-7细胞生长及侵袭力的影响[J]. 中国生物工程杂志, 2014, 34(9): 31-39.
[15] 周艳, 王小囡, 闫姗姗, 吴晋元, 孙茂盛, 张磊, 李鸿钧. EGFPLmx1A双基因共表达重组腺病毒的构建及检测[J]. 中国生物工程杂志, 2014, 34(9): 72-79.