
Tet system的调控原理及其在转基因小鼠模型上的应用
张景锋, 郭欣政, 卫恒习, 李莉, 张守全
中国生物工程杂志 ›› 2011, Vol. 31 ›› Issue (11) : 90-94.
Tet system的调控原理及其在转基因小鼠模型上的应用
Research Progress of the Principal and Application on Transgenic Mouse Models of Tetracycline Inducible Expression System
基因表达的调控是分子生物学研究的一个重要问题,也是基因治疗和基因功能研究的重要手段。诱导性基因表达系统可以从时间上调控基因的表达,是基因治疗和基因功能研究的重要工具之一。其中,四环素诱导基因表达系统(tetracycline inducible expression system,Tet system)是应用最广泛的一种,它可以在时间和空间上对基因进行严谨和高效地诱导表达。基于该系统获得了不同用途的转基因动物,这些模型动物的建立为研究特定基因的功能及其在疾病发生中的作用打下了实验基础。现就四环素诱导表达系统的原理和在小鼠模型上的研究应用做一综述。
The regulation of gene expression is an important problem in molecular biology research, and also an important tool on gene therapy and gene function research. Inducible gene expression system can regulate the expressive time of genes, which is one of the most important tools on gene function. And tetracycline inducible expression system is widely applicated among them, which has been used on transgenic animal models. The establishment of the animal model provides the experimental basis for gene function research. The principal and application tetracycline inducible expression system on mouse models are reviewed.
Tet / system / Tet-off系统 / Tet-on系统 / 转基因小鼠模型 {{custom_keyword}} /
Tet system / Tet-off system / Tet-on system / Transgenic mouse models {{custom_keyword}} /
[1] Pelham H R. A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene. Cell, 1982,30(2):517-528.
[2] Joshi B, Ordonez-Ercan D, Dasgupta P,et al. Induction of human metallothionein 1G promoter by VEGF and heavy metals: differential involvement of E2F and metal transcription factors. Oncogene,2005,24(13):2204-2217.
[3] Nikolic D B, Samardzic J T, Bratic A M, et al. Buckwheat (Fagopyrum esculentum Moench) FeMT3 gene in heavy metal stress: protective role of the protein and inducibility of the promoter region under Cu(2+) and Cd(2+) treatments. J Agric Food Chem, 2010,24;58(6):3488-3494.
[4] McTavish N, Getty J, Burchell A, et al. Glucocorticoids can activate the alpha-ENaC gene promoter independently of SGK1. Biochem J, 2009, 25;423(2):189-197.
[5] Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A, 1992, 89(12):5547-5551.
[6] Gossen M, Freundlieb S, Bender G, et al. Transcriptional activation by tetracyclines in mammalian cells. Science, 1995,268(5218):1766-1769.
[7] Schultze N, Burki Y, Lang Y, et al. Efficient control of gene expression by single step integration of the tetracycline system in transgenic mice. Nat Biotechnol, 1996, 14(4):499-503.
[8] Soulier S, Stinnakre M G, Lepourry L, et al. Use of doxycycline-controlled gene expression to reversibly alter milk-protein composition in transgenic mice. Eur J Biochem, 1999,260(2):533-539.
[9] Kistner A, Gossen M, Zimmermann F, et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci U S A, 1996,93(20):10933-10938.
[10] Diamond I, Owolabi T, Marco M, et al. Conditional gene expression in the epidermis of transgenic mice using the tetracycline-regulated transactivators tTA and rTA linked to the keratin 5 promoter. J Invest Dermatol, 2000,115(5):788-794.
[11] Wang H, Chae K R, Shin D H, et al. Xenobiotic response in humanized double transgenic mice expressing tetracycline-controlled transactivator and human CYP1B1. Arch Biochem Biophys, 2001,395(1):32-40.
[12] Boy J, Leergaard T B, Schmidt T, et al. Expression mapping of tetracycline-responsive prion protein promoter: digital atlasing for generating cell-specific disease models. Neuroimage, 2006,33(2):449-462.
[13] Zhou H, Huang C, Yang M, et al. Developing tTA transgenic rats for inducible and reversible gene expression. Int J Biol Sci, 2009,5(2):171-181.
[14] Odeh F, Leergaard T B, Boy J, et al. Atlas of transgenic Tet-Off Ca2+/calmodulin-dependent protein kinase II and prion protein promoter activity in the mouse brain. NeuroImage, 2011,2603-2611.
[15] Perl A K, Tichelaar J W, Whitsett J A. Conditional gene expression in the respiratory epithelium of the mouse. Transgenic Res, 2002,11(1):21-29.
[16] Zhu Z, Zheng T, Lee C G, et al. Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Semin Cell Dev Biol, 2002,13(2):121-128.
[17] Shigehara T, Zaragoza C, Kitiyakara C, et al. Inducible podocyte-specific gene expression in transgenic mice. J Am Soc Nephrol, 2003,14(8):1998-2003.
[18] Gallagher A R, Schnig K, Brown N, et al. Use of the tetracycline system for inducible protein synthesis in the kidney. J Am Soc Nephrol, 2003, 14(8):2042-2051.
[19] Grill M A, Bales M A, Fought A N, et al. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice. Transgenic Res, 2003, 12(1):33-43.
[20] Hayashi M, Hayashi Y, Liu C Y, et al. Over expression of FGF7 enhances cell proliferation but fails to cause pathology in corneal epithelium of Kerapr-rtTA/FGF7 bitransgenic mice. Mol Vis, 2005,11:201-207.
[21] Dumortier J, Schnig K, Oberwinkler H, et al. Liver-specific expression of interferon gamma following adenoviral gene transfer controls hepatitis B virus replication in mice. Gene Ther, 2005,12(8):668-677.
[22] Shen Q, Sun Q, Wei X, et al.Generation and characterization of islet cell tumor in pTet-on/pTRE-SV40Tag double-transgenic mice model. J Biosci Bioeng, 2007, 104(1):14-21.
[23] Song X, Guo Y, Duo S, et al. A mouse model of inducible liver injury caused by tet-on regulated urokinase for studies of hepatocyte transplantation. Am J Pathol, 2009,175(5):1975-1983.
[24] Zhou H, Liu Y, He F, et al. Temporally and spatially controllable gene expression and knockout in mouse urothelium. Am J Physiol Renal Physiol, 2010,299(2):F387-F395.
[25] Sheng Y, Lin C C, Yue J, et al. Generation and characterization of a Tet-On(rtTA-M2) transgenic rat. BMC Developmental Biology, 2010, 10:17.
[26] Zhu Z, Ma B, Homer R J, et al. Use of the tetracycline-controlled transcriptional silencer (tTS) to eliminate transgene leak in inducible overexpression transgenic mice. J Biol Chem, 2001,276(27):25222-25229.
[27] Uchida S, Sakai S, Furuichi T, et al. Tight regulation of transgene expression by tetracycline-dependent activator and repressor in brain. Genes Brain Behav, 2006,5(1):96-106.
[28] Hayakawa T, Yusa K, Kouno M, et al. Blooms syndrome genedeficient phenotype in mouse primary cells induced by a modified tetracycline-controlled trans-silencer. Gene, 2006, 369:80-89.
[29] Yusa K, Horie K, Kondoh G, et al. Genome-wide phenotype analysis in ES cells by regulated disruption of Blooms syndrome gene. Nature,2004, 429(6994):896-899.
国家"973"计划资助项目(2011CB944203, 2011CB944202)
/
〈 |
|
〉 |