Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (1): 28-35    DOI: 10.13523/j.cb.20140105
研究报告     
本氏烟Ⅰ型启动子的克隆及其转录起始位点分析
李志英1,2, 牟红珍2, 高丁梅2, 丁国平2, 马婷2, 王盛1,2
1. 西部特色生物资源保护与利用教育部重点实验室 银川 750021;
2. 宁夏大学生命科学学院 银川 750021
Cloning and Analysis of the RNA Polymerase i-Promoter of Nicotiana benthaminana
LI Zhi-ying1,2, MU Hong-zhen2, GAO Ding-mei2, DING Guo-ping2, MA Ting2, WANG Sheng1,2
1. Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan 750021, China;
2. School of Life Science, Ningxia University, Yinchuan 750021, China
 全文: PDF(1290 KB)   HTML
摘要: 启动子是转录水平上一个重要的调控元件,其决定着基因的表达模式和表达强度。Ⅰ型启动子具有高转录活性和种属间特异性等特点。如将其应用于植物RNA病毒载体表达系统,有利于提高表达系统的表达效率和生物安全性。本氏烟(Nicotiana benthaminana)是一种被广泛地应用于植物生物反应器和植物病理学的模式生物,但是现有核酸数据库中尚没有其Ⅰ型启动子的相关信息。因此,克隆本氏烟Ⅰ型启动子并分析其转录起始位点就具有重要的应用价值。通过半巢式PCR获得了514 bp的本氏烟Ⅰ型启动子序列(KC352713);生物信息学分析初步预测其转录起始位点位于其核心序列TATA(G)TA(N)GGGGG中的第3位A处;通过植物RNA病毒表达载体和5’RACE技术在体内验证本氏烟Ⅰ型启动子转录起始位点与生物信息学预测结果一致。研究结果为深入研究Ⅰ型启动子和构建Ⅰ型启动子介导转录的植物RNA病毒载体表达系统奠定了基础。
关键词: 本氏烟Ⅰ型启动子转录起始位点病毒载体    
Abstract: Promoter is an important transcriptional regulatory element, which controls the levels and patterns of gene expression. RNA Pol Ⅰ is a cellular enzyme that is abundantly expressed in cells and transcribes rRNA precursor lacking a 5' cap, a 3' poly (A) tail and introns. Thus, viral RNA synthesized in cells transfected with Pol Ⅰ-driven plasmids containing viral genomic cDNA has precise sequences. This may increase the expression level and biological safety of the plant RNA-based expression system. In addition, Nicotiana benthaminana is a kind of model organism which widely used in plant bioreactor and plant pathology. However, there is no nucleic acid sequence data about its RNA Pol Ⅰ promoter for now. Therefore, Nicotiana benthaminana Pol Ⅰ promoter sequence we cloned and analysized its transcription initiation site (TIS). The 514 bp RNA pol Ⅰ promoter sequence (KC352713) was amplified by semi-net PCR form Nicotiana benthaminana and the third A residue in the core sequence TATA (G) TA (N) GGGGG was predicted to be the transcription initiation site (TIS) by comparison of sequences flanking RNA pol Ⅰ promoter TIS in silicon. The predicted result was conformed by the 5' RACE and sequence analysis. This result will be beneficial for the further research of both Pol Ⅰ promoter and Pol Ⅰ-based plant virus expression vectors.
Key words: Nicotiana benthaminana    RNA polymerase Ⅰ promoter    Transcription initiation site    Viral vectors
收稿日期: 2013-10-21 出版日期: 2014-01-25
ZTFLH:  Q781  
基金资助: 国家自然科学基金资助项目(31060023)
通讯作者: 王盛,E-mail:wang_s@nxu.edu.cn     E-mail: wang_s@nxu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李志英
牟红珍
高丁梅
丁国平
马婷
王盛

引用本文:

李志英, 牟红珍, 高丁梅, 丁国平, 马婷, 王盛. 本氏烟Ⅰ型启动子的克隆及其转录起始位点分析[J]. 中国生物工程杂志, 2014, 34(1): 28-35.

LI Zhi-ying, MU Hong-zhen, GAO Ding-mei, DING Guo-ping, MA Ting, WANG Sheng. Cloning and Analysis of the RNA Polymerase i-Promoter of Nicotiana benthaminana. China Biotechnology, 2014, 34(1): 28-35.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140105        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I1/28

[1] Boehm R. Bioproduction of therapeutic proteins in the 21st century and the role of plants and plant cells as production platforms. Ann. N.Y. Acad. Sci, 2007, 1102: 121-134.
[2] Lico C, Chen Q, Santi L. Viral vectors for production of recombinant proteins in plants. J Cell Physiol, 2008, 216(2): 366-377.
[3] Cramer P, Armache K J, Baumli S, et al. Structure of eukaryotic RNA polymerases. Annu. Rev. Biophys, 2008, 37: 337-352.
[4] Gu M, Lima C D. Processing the message: structural insights into capping and decapping mRNA. Curr Opin Struct Biol., 2005, 15(1): 99-106.
[5] Gleba Y, Klimyuk V, Marillonnet S. Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol, 2007, 18(2): 134-141.
[6] Marillonnet S, Thoeringer C, kandzia R, et al. Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol, 2005, 23(6): 718-723.
[7] Kuhn C D, Geiger S R, Baumli S, et al. Functional architecture of RNA polymerase I. Cell, 2007, 131(7): 1260-1272.
[8] Fan H, Yakura K, Miyanishi M, et al. In vitro transcription of plant RNA polymerase I-dependent rRNA genes is species-specific. Plant J, 1995, 8(2): 295-298.
[9] Nigel G, Barbara H, Thomas H, et al. "Agroinfection", an alternative route for viral infection of plants by using the Ti plasmid. Proc Natl Acad Sci U S A, 1986, 83(10): 3282-3286.
[10] Tremblay R, Wang D, Jevnikar A M, et al. Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv, 2010, 28(2): 214-221.
[11] 王盛, 王杨, 李志英, 等. TBSV病毒瞬时表达载体构建及其表达. 宁夏大学学报(自然科学版), 2011, 32(2): 159-163. Wang SH, Wang Y, Li ZH, et al. Construction of TBSV rna-based transient expression vectors and its expression in tobacco plants. Journal of Ningxia University(Natural Science Edition), 2011, 32(2):159-163.
[12] Velásquez A C, Chakravarthy S, Martin G B. Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. The Journal of Visualized Experiments, 2009, 28: e1292.
[13] Borisjuk N V. Structural analysis of rDNA in the genus Nicotiana. Plant Mol Biol, 1997, 35(5): 655-660.
[14] Borisjuk N, Borisjuk L, Komarnytsky S, et al. Tobacco ribosomal DNA spacer element stimulates amplification and expression of heterologous genes. Nat Biotechnol, 2000, 18(12):1303-1306.
[15] Russell J, Zomerdijk J C. RNA-polymerase-I-directed rDNA transcription, life and works. Trends Biochem Sci, 2005, 30(2):87-96.
[16] Deepak K, Sunita P, Rajiv R, et al. Development of useful recombinant promoter and its expression analysis in different plant cells using confocal laser scanning microscopy. PLoS One, 2011, 6(9): e24627.
[17] Streatfield S J. Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J, 2007, 5(1):2-15.
[18] Feng L, Li F, Zheng X, et al. The mouse Pol I terminator is more efficient than the hepatitis delta virus ribozyme in generating influenza-virus-like RNAs with precise 3' ends in a plasmid-only-based virus rescue system. Arch Virol, 2009, 154(7): 1151-1156.
[19] Ongagna-yhombi S Y, Corstjens P, Geva E, et al. Improved assay to detect Plasmodium falciparum using an uninterrupted, semi-nested PCR and quantitative lateral flow analysis. Malar J, 2013, 12:74.
[20] Massin P, Rodrigues P, Marasescu M, et al. Cloning of the chicken RNA polymerase I promoter and use for reverse genetics of influenza a viruses in avian cells. J Virol, 2005, 79(21): 13811-13816.
[1] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[2] 黄蕾,万常青,刘美琴,赵敏,郑妍鹏,彭向雷,虞结梅,付远辉,何金生. 利用DNA Assembly方法构建重组腺病毒载体[J]. 中国生物工程杂志, 2021, 41(6): 23-26.
[3] 王聪,李秀,牛苗,戴阳光,董哲岳,董小岩,余双庆,杨怡姝. 基于TCID50检测AAV9载体制品感染性滴度的方法[J]. 中国生物工程杂志, 2021, 41(10): 28-32.
[4] 徐应永. 基因治疗产品的开发现状与挑战[J]. 中国生物工程杂志, 2020, 40(12): 95-103.
[5] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[6] 化磊召,易小萍,储炬,庄英萍,张嗣良. 基于PAT的PCV2 VLPs生产过程优化与控制研究[J]. 中国生物工程杂志, 2018, 38(8): 50-58.
[7] 韩亚丽,杨冠恒,陈雁雯,龚秀丽,张敬之. 表达β-珠蛋白基因的安全性慢病毒载体的优化 *[J]. 中国生物工程杂志, 2018, 38(7): 50-57.
[8] 代爽, 赵青青, 邱峰. PEI-壳聚糖在结肠癌细胞CD133+梯度表达的转染研究[J]. 中国生物工程杂志, 2016, 36(6): 32-38.
[9] 高越, 檀硕, 任兆瑞, 张敬之. 原位染色检测慢病毒载体转录通读方法的建立[J]. 中国生物工程杂志, 2015, 35(5): 55-60.
[10] 李玉强, 朱志图, 王巍, 李谌, 徐娜, 王钰, 李男, 孙宏治. RNA干扰NUP88基因对人乳腺癌MCF-7细胞生长及侵袭力的影响[J]. 中国生物工程杂志, 2014, 34(9): 31-39.
[11] 王鑫, 陈玲, 孙飞, 陆航. RNAi沉默CXCR7对人结肠癌细胞SW620特异性靶向抑制的实验研究[J]. 中国生物工程杂志, 2014, 34(2): 14-20.
[12] 管洁, 邓瑶, 文波, 陈红, 王文, 谭文杰. 整合缺陷型重组慢病毒载体构建及HCV重组假型慢病毒颗粒的制备与性状分析[J]. 中国生物工程杂志, 2013, 33(6): 62-67.
[13] 李袁飞, 赵和平, 刘静, 朱国强, 张革红, 贾军梅, 杨文慧. 在结肠癌细胞中RNA干扰TGFBR2慢病毒载体的构建及其功能的初步研究[J]. 中国生物工程杂志, 2013, 33(5): 28-34.
[14] 张文峰, 张琼宇, 薄华本, 邵红伟, 李晓程, 王腾, 黄树林. 5型和35型腺病毒纤毛蛋白的原核表达及活性验证[J]. 中国生物工程杂志, 2013, 33(12): 15-20.
[15] 燕海峰, 易康乐, TREFIL P, 胡雄贵, 邓缘, 朱立军. 慢病毒载体导入种蛋内鸡胚技术研究[J]. 中国生物工程杂志, 2012, 32(12): 73-79.