Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (09): 125-130    
综述     
生物法合成尿苷二磷酸葡萄糖的研究进展
陈圣, 李艳, 刘欢, 严明, 许琳
南京工业大学生物与制药工程学院 南京 210009
Research Advances in Biosynthesis of UDPG
CHEN Sheng, LI Yan, LIU Huan, YAN Ming, XU Lin
Biotechnology and Pharmaceutical Engineering of Nanjing University of Technology, Nanjing 210009, China
 全文: PDF(545 KB)   HTML
摘要: 尿苷二磷酸葡萄糖(UDPG)是一种重要的糖类物质合成前体。生物法合成具有低成本、无污染和高立体选择性等传统化学法不具备的优势。利用纯酶催化的生物法以基于Leloir途径改进的一锅法、蔗糖合酶催化的两步法以及糖合成反应可逆催化等产UDPG,实现了UDPG的高产。全细胞催化法利用稳定的胞内酶系产UDPG,胞内生成的UDPG作为底物直接参与产物的催化合成,可行性高且成本更低。综述了酶法和全细胞催化法合成UDPG这两种最主要生物法的研究进展。
关键词: 尿苷二磷酸葡萄糖生物法酶法全细胞催化    
Abstract: UDPG is an important nucleotide diphosphate monosaccharide which serves as a biogenetic precursor for a range of sugars. Compared with traditional chemical synthesis of UDPG, Biosynthesis is inexpensive pollution-free and high Stereospecific. Pure enzymatic strategies involving modified Leloir one-pot enzymatic system, two-step Sucrase synthase catalysis and reversible catalysis of sugar synthetic reaction achieved a high production of UDPG. Whole cell catalysis utilized the stable endoenzymes for UDPG biosynthesis and intracellular UDPG could be directly used to synthetize the products in cells, which seemed to be viable and low cost. In this paper, the research advances of enzymatic and whole cell catalysis were reviewed.
Key words: UDPG    Biosynthesis    Enzymatic catalysis    Whole cell catalysis
收稿日期: 2012-03-19 出版日期: 2012-09-25
ZTFLH:  Q55  
基金资助: 江苏省高校自然科学研究(10KJB530004);国家自然科学基金(21106068);江苏省自然科学基金(BK2011801);教育部博士点基金(20113221120002)资助项目
通讯作者: 李艳     E-mail: liyan@njut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈圣
李艳
刘欢
严明
许琳

引用本文:

陈圣, 李艳, 刘欢, 严明, 许琳. 生物法合成尿苷二磷酸葡萄糖的研究进展[J]. 中国生物工程杂志, 2012, 32(09): 125-130.

CHEN Sheng, LI Yan, LIU Huan, YAN Ming, XU Lin. Research Advances in Biosynthesis of UDPG. China Biotechnology, 2012, 32(09): 125-130.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I09/125

[1] Watkins W. Glycosyltransferases, early history, development and future prospects. Carbohydrate Research, 1986, 149(1):1-12.
[2] Coutinho P M, Deleury E, Davies G J, et al. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol, 2003, 328(2):307-317.
[3] Hancock S M, Vaughan M D, Withers S G. Engineering of glycosidases and glycosyltransferases. Curr Opin Chem Biol, 2006, 10(5):509-519.
[4] Heidlas J E, Williams K W, Whitesides G M. Nucleoside phosphate sugars:syntheses on practical scales for use as reagents in the enzymatic preparation of oligosaccharides and glycoconjugates. Acc Chem Res, 1992, 25(7):307-314.
[5] Kim D D. The sulfur-containing antibiotic BE-7585A: a study of its synthesis. UTDR, 2010.
[6] Richman A, Swanson A, Humphrey T, et al. Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J, 2005, 41(1):56-67.
[7] Prescher J A, Bertozzi C R. Chemical Technologies for Probing Glycans. Cell, 2006, 126(5):851-854.
[8] Feingold D S, Barber G A. Nucleotide sugars. In: Dey P M, Harborne J B. Methods in Plant Biochemistry—Carbohydrates. 2. New York: Academic Press, 1990. 39-78.
[9] Caputto R, Leloir L F, Cardini C E, et al. Isolation of the coenzyme of the galactose phosphate-glucose phosphate transformation. J Bio Chem, 1950, 184(1):333-350.
[10] Wagner G K, Pesnot T, Fieid R A. A survey of chemical methods for sugar-nucleotide synthesis. Nat Prod Rep, 2009, 26(9):1172-1194.
[11] Moffatt J G, Khorana H G. Nucleoside polyphosphates VIII.1 New and improved synthesis of uridine diphosphate glucose and flavin adenine dinucleotide using nucleoside-5'-phosphoramides. J Am Chem Soc, 1958, 80(14):3756-3761.
[12] Roseman S, Distler J J, Moffatt J G, et al. Nucleoside Polyphosphates. XI.1 An Improved General Method for the Synthesis of Nucleotide Coenzymes. Syntheses of Uridine-5', Cytidine-5' and Guanosine-5' Diphosphate Derivatives. J Am Chem Soc, 1958, 80(14):3756-3761.
[13] Simon, Simon E S, Grabowski S, et al. Convenient syntheses of cytidine-5'-triphosphate (CTP), guanosine-5'-triphosphate(GTP), and uridine-5'-triphosphate(UTP) and their use in the preparation of UDP-glucose, UDP-glucuronic acid, and GDP-mannose. J Org Chem, 1990, 55(6):1834-1841.
[14] Wittmann V, Wong C H. 1H-Tetrazole as catalyst in phosphomorpholidate coupling reactions: Efficient synthesis of GDP-fucose, GDP-mannose, and UDP-galactose. J Org Chem, 1997, 62(7):2144-2147.
[15] Campbell R E, Tanner M E. UDP-glucose analogues as inhibitors and mechanistic probes of UDP-glucose dehydrogenase. J Org Chem, 1999, 64(26):9487-9492.
[16] Schäfer A, Thiem J. Synthesis of novel donor mimetics of UDP-Gal, UDP-GlcNAc and UDP-GalNAc as potential transferaseinhibitors. J Org Chem, 2000, 65(1):24-29.
[17] Arlt M, Hindsgaul O. Rapid chemical synthesis of sugar nucleotides in a form suitable for enzymatic oligosaccharide synthesis. J Org Chem, 1995, 60(1):14-15.
[18] Hanessian S, Lu P P, Ishida H. One-step, stereocontrolled synthesis of glycosyl-1-phosphates, uridine-5’-diphosphogalactos, and uridine-5’-diphosphoglucose from unprotected glycosyl donors. J Am Chem Soc, 1998, 120(51):13296-13300.
[19] Timmons S C, Jakeman D L. Jakeman. Stereospecific synthesis of sugar-1-phosphates and their conversion to sugar nucleotides. Carbohydrate Research, 2008, 343(5):865-874.
[20] Timmons S C, Jakeman D L. Stereoselective synthesis of sugar nucleotides using neighboring group participation. Current Protocols in Nucleic Acid Chemistry, 2007, 31(13.7):1-16.
[21] Wolf S, Zismann T, Lunau N, et al. A convenient synthesis of nucleoside diphosphate glycopyranoses and other polyphosphorylated bioconjugates. European Journal of Cell Biology, 2010, 89(1):63-75.
[22] Anderson E P, Elizabeth S M, Robert M B. Enzymatic syntheses of 14C-labeled uridine diphosphoglucose, galactose 1-Phosphate, and uridine diphosphogalactose. J Am Chem Soc, 1959, 81(24):6514-6517.
[23] Ma X Y, Stöckigt J. High yielding one-pot enzyme-catalyzed synthesis of UDP-glucose in gram scales. Carbohydrate Research, 2001, 333(2):159-163.
[24] Bae J, Kim K H, Kim D, et al. A practical enzymatic synthesis of UDP sugars and NDP glucoses. Chem Bio Chem, 2005, 6(11):1963-1966.
[25] Muthana M M, Qu J, Li Y, et al. Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP). Chem Commun, 2012, 48(21):2728-2730.
[26] Zervosen A, Stein A, Adrian H, et al. Combined enzymatic synthesis of nucleotide (deoxy) sugars from sucrose and nucleoside monophosphates. Tetrahedron, 1996, 52(7):2395-2404.
[27] Römer U, Schrader H, Günther N. Expression, purification and characterization of recombinant sucrose synthase 1 from Solanum tuberosum L. for carbohydrate engineering. Journal of Biotechnology, 2004, 107(2):135-149.
[28] Ryu S I, Kim J E, Kim E J, et al. Catalytic reversibility of Pyrococcus horikoshii trehalose synthase: Efficient synthesis of several nucleoside diphosphate glucoses with enzyme recycling. Process Biochemistry, 2011, 46(1):128-134.
[29] Ryu S I, Park C S, Cha J, et al. A novel trehalose synthasefrom Pyrococcus horikoshii: molecular cloning and characterization. Biochem Biophys Res Commun, 2005, 329(2):429-436.
[30] Kim H M, Chang Y K, Ryu S I, et al. Enzymatic synthesis of a galactose containing trehalose analogue disaccharide by Pyrococcus horikoshii trehalose-synthesizing glycosyltransferase: Inhibitory effects on several disaccharidase activities. J Mol Catal B: Enzym, 2007, 49(1-4):98-103.
[31] Koeller K M, Wong C H. Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies. Chem Rev, 2000, 100(12):4465-4494.
[32] Qu Q, Lee S J, Boos W. TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem, 2004, 279(46):47890-47897.
[33] Dong Q, Ouyang L M, Yu H L, et al. Efficient biosynthesis of uridine diphosphate glucose from maltodextrin by multiple enzymes immobilized on magnetic nanoparticles. Carbohyd Res, 2010, 345:1622-1626.
[34] Mao Z, Shin H D, Chen R R. Engineering the E. coli UDP-glucose synthesis pathway for oligosaccharide synthesis. Biotechnol Prog, 2006, 22(2):369-374.
[35] Oh J S. Disaccharide Synthesis using E.coliUDP-glucose regeneration system. Korean Journal of Biotechnology and Bioengineering, 2008, 23(6):474-478.
[36] Jesús R D, María J Y. Enhanced UDP-glucose and UDP-galactose by homologous overexpression of UDP-glucose pyrophosphorylasein Lactobacillus casei. Journal of Biotechnology, 2011, 154(4): 212-215.
[37] Ruffing A, Chen R R. Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microbial Cell Factories, 2006, 5(1):25.
[38] Yan Y, Li Z, Mattheos A G K. High-Yield Anthocyanin Biosynthesis in Engineered Escherichia coli. Biotechnology and Bioengineering, 2008, 100(1):126-140.
[39] Bosco M B, Machtey M, Iglesias A A, et al. UDPglucose pyrophosphorylase from Xanthomonas spp. Characterization of the enzyme kinetics, structure and inactivation related to oligomeric dissociation. Biochimie, 2009, 91(2):204-213.
[40] Moyrand F, Lafontaine I, Fontaine T, et al. UGE1 and UGE2 Regulate the UDP-Glucose/UDP-Galactose Equilibrium in Cryptococcus neoformans. Eukaryotic Cell, 2008, 7(12): 2069-2077.
[41] Oka T, Jigami Y. Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae. FEBS J, 2006, 273(12):2645-2657.
[42] Boels I C, Kleerebezem M, de Vos W M. Engineering of carbon distribution between glycolysis and sugar nucleotide biosynthesis in Lactococcus lactis. Appl Environ Microbiol. 2003, 69(2):1129-1135.
[1] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[2] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[3] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.
[4] 王越,李江华,堵国成,刘龙. L-氨基酸脱氨酶的分子改造及其用于全细胞催化法生产α-酮戊二酸条件的优化 *[J]. 中国生物工程杂志, 2019, 39(3): 56-64.
[5] 李炳娟, 李玉霞, 李北平, 凌焱, 周围, 刘刚, 张景海, 岳俊杰, 陈惠鹏. 前手性酮全细胞转化体系中甲酸脱氢酶C-端无序结构与转化效率的关系研究[J]. 中国生物工程杂志, 2013, 33(8): 1-10.
[6] 陈永露, 吴绵斌, 林建平, 杨立荣, 岑沛霖. GshF在大肠杆菌中的表达及酶学性质研究[J]. 中国生物工程杂志, 2013, 33(12): 21-28.
[7] 孟青青, 杨建国, 王凤寰. 生物法合成丙烯酸的研究进展[J]. 中国生物工程杂志, 2012, 32(10): 119-127.
[8] 李小冬, 杨娜, 万永虎, 吴嘉, 贾东晨, 乔敏. 表面展示工程在酒精发酵方面的应用[J]. 中国生物工程杂志, 2012, 32(08): 107-110.
[9] 邹洋, 薛梦阳, 赵颖华, 陈敏. 糖苷内切酶法合成带有均一糖链的糖蛋白和糖肽[J]. 中国生物工程杂志, 2012, 32(02): 107-116.
[10] 夏俊刚, 何逵夫, 谢希贤, 徐庆阳, 陈宁. 枯草芽孢杆菌嘌呤核苷磷酸化酶酶学性质研究及在利巴韦林酶法合成中的应用[J]. 中国生物工程杂志, 2010, 30(12): 53-59.
[11] 郭明 胡昌华. 生物转化—从全细胞催化到代谢工程[J]. 中国生物工程杂志, 2010, 30(04): 110-115.
[12] 张刚,杨光,李春,裴海生,曹竹安. 生物法生产2,3-丁二醇研究进展[J]. 中国生物工程杂志, 2008, 28(6): 133-140.
[13] 刘文山,闫云君. 脂肪酶的表面展示及其应用[J]. 中国生物工程杂志, 2007, 27(9): 97-102.
[14] 陈冠军, 秦梦华, 曲音波, 高培基. 纤维素酶脱墨机理的研究进展[J]. 中国生物工程杂志, 2001, 21(3): 17-22.
[15] . 靛兰植物染料遗传工程合成[J]. 中国生物工程杂志, 1992, 12(5): 51-51.