Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (09): 118-124    
综述     
丙酮丁醇梭菌丁醇耐受性
毛绍名, 章怀云
中南林业科技大学林业生物技术湖南省重点实验室 长沙 41004
The Advance of Research on the Butanol Tolerance of Clostridium acetobutylicum
MAO Shao-ming, ZHANG Huai-yun
Forestry Biotechnology Hunan Key Laboratories, Central South University of Forestry and Technology, Changsha 410004, China
 全文: PDF(431 KB)   HTML
摘要: 丁醇在发酵培养基中的积累所产生的毒性问题是限制丁醇产量的重要因素,然而对于Clostridium acetobutylicum是如何适应丁醇胁迫,进而调节菌体生长和代谢的,目前尚缺乏系统研究,不能全面揭示C. acetobutylicum的丁醇耐受性机制。对丙酮丁醇梭菌丁醇耐受性有关的研究成果进行了综述,旨在深入理解菌株丁醇耐受性发生改变的相关分子基础。希望为进行微生物丁醇耐受性分子机制的改造、提高菌株的丁醇耐受性提供新的研究思路。
关键词: 丙酮丁醇梭菌丁醇耐受性分子机制    
Abstract: The accumulation of butanol in fermentation medium is the major barrier for production of butanol. Currently, system research was lack for adaptation to butanol stress of Clostridium acetobutylicum. The biological mechanism on butanol tolerance is rather complex and remains largely unknown. Recent literatures were retrospectively analyzed to further understand the molecular mechanism of butanol tolerance, and will provide new research clues for modifying the molecular mechanism of butanol tolerance and/or enhanced butanol tolerance.
Key words: Clostridium acetobutylicum    Butanol tolerance    Molecular mechanism
收稿日期: 2012-04-09 出版日期: 2012-09-25
ZTFLH:  Q936  
基金资助: 国家自然科学基金(31140014,31200074);湖南省自然科学基金(12JJ4030)资助项目
通讯作者: 章怀云     E-mail: tong62035@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
毛绍名
章怀云

引用本文:

毛绍名, 章怀云. 丙酮丁醇梭菌丁醇耐受性[J]. 中国生物工程杂志, 2012, 32(09): 118-124.

MAO Shao-ming, ZHANG Huai-yun. The Advance of Research on the Butanol Tolerance of Clostridium acetobutylicum. China Biotechnology, 2012, 32(09): 118-124.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I09/118

[1] Zhu L, Dong H, Zhang Y, et al. Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability. Metab Eng, 2011, 13(4):426-434.
[2] Keiski V G, Päkkilä J, Ojamo H, et al. Challenges in biobutanol production: How to improve the efficiency? Renewable and Sustainable Energy Reviews, 2011, 15(2):964-980.
[3] Ezeji T C, Qureshi N, Blaschek H P. Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol, 2007, 18(3):220-227.
[4] Liu S, Qureshi N. How microbes tolerate ethanol and butanol. N Biotechnol, 2009, 26(3-4):117-121.
[5] Ezeji T C, Qureshi N, Blaschek H P. Butanol fermentation research: upstream and downstream manipulations. The Chemical Record, 2004, 4(5):305-314.
[6] Ezeji T, Milne C, Price N D, et al. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol, 2010, 85(6):1697-1712.
[7] Jia K, Zhang Y, Li Y. Systematic engineering of microorganisms to improve alcohol tolerance. Eng Life Sci, 2010, 10(5):422-429.
[8] 董红军, 张延平, 李寅. 丙酮丁醇梭菌的遗传操作系统. 生物工程学报, 2010, 26(10):1372-1378. Dong H J, Zhang Y P, Li Y. Genetic modification systems for Clostridium acetobutylicum. Chinese Journal of Biotechology, 2010, 26(10): 1372-1378.
[9] Alsaker K V, Paredes C, Papoutsakis E T. Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng, 2010, 105(6):1131-1147.
[10] Baek K T, Vegge C S, Skorko-Glonek J, et al. Different contributions of HtrA protease and chaperone activities to Campylobacter jejuni stress tolerance and physiology. Appl Environ Microbiol, 2011, 77(1):57-66.
[11] Tomas C A, Welker N E, Papoutsakis E T. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Appl Environ Microbiol, 2003, 69(8):4951-4965.
[12] Alsaker K V, Spitzer T R, Papoutsakis E T. Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell's response to butanol stress. J Bacteriol, 2004, 186(7):1959-1971.
[13] Mao S M, Luo Y A M, Zhang T R, et al. Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. J Proteome Res, 2010, 9(6):3046-3061.
[14] Lee J, Yun H, Feist A M, et al. Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biotechnol, 2008, 80(5):849-862.
[15] Jones D T, Woods D R. Acetone-butanol fermentation revisited. Microbiol Rev, 1986, 50(4):484-524.
[16] Ounine K, Petitdemange H, Raval G, et al. Regulation and butanol inhibition of D-xylose and D-glucose uptake in Clostridium acetobutylicum. Appl Environ Microbiol, 1985, 49(4):874-878.
[17] Costa J M, Moreira A R. Growth-inhibition kinetics for the acetone-butanol fermentation. ACS Symp Ser, 1983, 207:501-512.
[18] Vollherbst-Schneck K, Sands J A, Montenecourt B S. Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol, 1984, 47(1):193-194.
[19] Gottwald M, Gottschalk G. The internal-pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation. Arch Microbiol, 1985, 143(1):42-46.
[20] Moreira A R, Ulmer D C, Linden J C. Butanol Toxicity in the Butylic Fermentation. Biotechnol Bioeng, 1981:567-579.
[21] Bowles L K, Ellefson W L. Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol, 1985, 50(5):1165-1170.
[22] Barber J M, Robb F T, Webster J R, et al. Bacteriocin production by Clostridium acetobutylicumin an industrial fermentation process. Appl Environ Microbiol, 1979, 37(3):433-437.
[23] Allcock E R, Reid S J, Jones D T, et al. Autolytic activity and an autolysis-deficient mutant of Clostridium acetobutylicum. Appl Environ Microbiol, 1981, 42(6):929-935.
[24] Terracciano J S, Rapaport E, Kashket E R. Stress-and growth phase-associated proteins of Clostridium acetobutylicum. Appl Environ Microbiol, 1988, 54(8):1989-1995.
[25] Heipieper H J, Neumann G, Cornelissen S, et al. Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol, 2007, 74(5):961-973.
[26] Heipieper H J, Meulenbeld G, van Oirschot Q, et al. Effect of environmental factors on the trans/cis ratio of unsaturated fatty acids in pseudomonas putida S12. Appl Environ Microbiol, 1996, 62(8):2773-2777.
[27] Baer S H, Blaschek H P, Smith T L. Effect of butanol challenge and temperature on lipid-composition and membrane fluidity of butanol-tolerant Clostridium-Acetobutylicum. Appl Environ Microbiol, 1987, 53(12):2854-2861.
[28] Baer S H, Blaschek H P, Smith T L. Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl Environ Microbiol, 1987, 53(12):2854-2861.
[29] Zhao Y S, Hindorff L A, Chuang A, et al. Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol, 2003, 69(5):2831-2841.
[30] Tomas C A, Beamish J, Papoutsakis E T. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol, 2004, 186(7):2006-2018.
[31] Harris L M, Welker N E, Papoutsakis E T. Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol, 2002, 184(13):3586-3597.
[32] Borden J R, Papoutsakis E T. Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microbiol, 2007, 73(9):3061-3068.
[33] Nolling J, Breton G, Omelchenko M V, et al. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol, 2001, 183(16):4823-4838.
[34] Bao G, Wang R, Zhu Y, et al. Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent-producing strain with multireplicon genome architecture. J Bacteriol, 2011, 193(18):5007-5008.
[35] Hu S, Zheng H, Gu Y, et al. Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018. BMC Genomics, 2011, 12(1):93.
[36] Lin Y L, Blaschek H P. Butanol production by a butanol-tolerant strain ofClostridium acetobutylicum in extruded corn broth. Appl Environ Microbiol, 1983, 45(3):966-973.
[37] Harris L M, Desai R P, Welker N E, et al. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng, 2000, 67(1):1-11.
[38] Harris L M, Blank L, Desai R P, et al. Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biotechnol, 2001, 27(5):322-328.
[39] Soucaille P, Joliff G, Izard A, et al. Butanol tolerance and autobacteriocin production by Clostridium acetobutylicum. Curr Microbiol, 1987, 14(5):295-299.
[40] Hermann M, Fayolle F, Marchal R, et al. Isolation and characterization of butanol-resistant mutants of Clostridium acetobutylicum. Appl Environ Microbiol, 1985, 50(5):1238-1243.
[41] Annous B A, Blaschek H P. Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity. Appl Environ Microbiol, 1991, 57(9):2544-2548.
[42] Formanek J, Mackie R, Blaschek H P. Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Appl Environ Microbiol, 1997, 63(6):2306-2310.
[43] Green E M, Bennett G N. Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. Appl Biochem Biotechnol, 1996, 57-58, 213-221.
[44] Bermejo L L, Welker N E, Papoutsakis E T. Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification. Appl Environ Microbiol, 1998, 64(3):1079-1085.
[45] Atsumi S, Hanai T, Liao J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 2008, 451(7174):86-89.
[46] Steen E J, Chan R, Prasad N, et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact, 2008, 7:36.
[47] Knoshaug E P, Zhang M. Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol, 2009, 153(1-3):13-20.
[48] Rogers P. Genetics and biochemistry of Clostridium relevant to development of fermentation processes. Adv. Appl. Microbiol., 1986, 31:1-60.
[49] Evans P J, Wang H Y. Enhancement of butanol formation by Clostridium acetobutylicum in the presence of decanol-oleyl alcohol mixed extractants. Appl Environ Microbiol, 1988, 54(7):1662-1667.
[50] Qureshi N, Maddox I S, Friedl A. Application of continuous substrate feeding to the ABE fermentation: relief of product inhibition using extraction, perstraction, stripping, and pervaporation. Biotechnol Prog, 1992, 8(5):382-390.
[51] Ezeji T, Qureshi N, Blaschek H. Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microbiol Biotechnol, 2003, 19(6):595-603.
[1] 柳双双,吴锁伟,饶力群,万向元. 玉米核雄性不育的分子机制研究与应用分析[J]. 中国生物工程杂志, 2018, 38(1): 100-107.
[2] 李生. 金属离子对细胞自噬的诱导作用[J]. 中国生物工程杂志, 2017, 37(7): 124-132.
[3] 王浩, 张敬书, 丁健, 罗洪镇, 陈锐, 史仲平. 限制葡萄糖、葡萄糖/乙酸双底物条件下自由控制丙丁梭菌ABE发酵丙酮浓度和丙酮/丁醇比[J]. 中国生物工程杂志, 2016, 36(10): 60-71.
[4] 林俊涵, 邱东凤, 林晨. 丁醇产生菌育种研究进展[J]. 中国生物工程杂志, 2014, 34(12): 118-128.
[5] 杨明 刘力强 牛昆 贾娟娟 李寅 张延平 王正品. 丙酮丁醇发酵菌的分子遗传改造[J]. 中国生物工程杂志, 2009, 29(10): 109-114.
[6] 施骏, 许耀. Ti质粒T区基因转移与整合分子机制的研究进展[J]. 中国生物工程杂志, 1993, 13(1): 5-10.
[7] 杨胜利. 重组微生物生理学[J]. 中国生物工程杂志, 1990, 10(2): 12-15.