Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (1): 100-107    DOI: 10.13523/j.cb.20180112
作物雄性不育与杂种优势利用专辑     
玉米核雄性不育的分子机制研究与应用分析
柳双双1,2,3,**,吴锁伟1,2,3,**,饶力群1,万向元1,2,3()
1 湖南农业大学 生物科学技术学院 长沙 410128
2 北京科技大学 生物前沿技术与应用研究中心 化学与生物工程学院 生物农业研究院 北京 100024
3 北京首佳利华科技有限公司 主要作物生物育种北京市工程实验室 生物育种北京市国际科技合作基地 北京 100192
Molecular Mechanism and Application Analysis of Genic Male Sterility in Maize
Shuang-shuang LIU1,2,3,**,Suo-wei WU1,2,3,**,Li-qun RAO1,Xiang-yuan WAN1,2,3()
1 College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
2 Advanced Biotechnology and Application Research Center, Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100024, China
3 Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
 全文: PDF(404 KB)   HTML
摘要:

玉米细胞核雄性不育突变体是研究花粉发育和减数分裂的理想材料,也是杂种优势利用的重要种质资源。随着分子生物技术的快速发展,部分玉米细胞核雄性不育基因陆续被成功克隆,为其在工程不育化杂交种生产中的应用奠定了基础。综述了近年来对玉米细胞核雄性不育的细胞学鉴定、基因克隆和分子机制的研究进展,并对其应用途径和前景进行了分析。

关键词: 玉米细胞核雄性不育基因克隆分子机制杂种优势利用    
Abstract:

Maize (Zea mays L.) genic male-sterile mutant has been widely studied for its biological significance on pollen developmental study and commercial value in hybrid vigor utilization. As the development of molecular biotechnology, several genic male-sterile genes has been cloned and characterized in maize, leading to potential use of genetic engineering male-sterility in commercial hybrid seed production. Here, the progress of cytological characterization, gene cloning and molecular mechanism of genic male-sterility study in maize are reviewe, and potential application approaches of genic male-sterile genes in maize hybrid production is discussed.

Key words: Zea mays    Genic male sterility    Gene cloning    Molecular mechanism    Hybrid vigor utilization
收稿日期: 2017-12-01 出版日期: 2018-01-31
ZTFLH:  Q785  
基金资助: 国家自然科学基金(31771875);国家重点研发计划(2017YFD0102001, 2017YFD0101200);国家国际科技合作项目(2015DFA30640);国家科技支撑计划(2014BAD01B02);中央高校基本科研业务费专项资金(06500060);国家“万人计划”科技创新领军人才特殊支持经费;北京市科技计划资助项目(Z161100000916013)
通讯作者: 柳双双,吴锁伟     E-mail: wanxiangyuan@ustb.edu.cn
作者简介: 通讯作者 万向元, 电子信箱: wanxiangyuan@ustb.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
柳双双
吴锁伟
饶力群
万向元

引用本文:

柳双双,吴锁伟,饶力群,万向元. 玉米核雄性不育的分子机制研究与应用分析[J]. 中国生物工程杂志, 2018, 38(1): 100-107.

Shuang-shuang LIU,Suo-wei WU,Li-qun RAO,Xiang-yuan WAN. Molecular Mechanism and Application Analysis of Genic Male Sterility in Maize. China Biotechnology, 2018, 38(1): 100-107.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180112        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I1/100

No.MutantsChr. sitesReferencesNo.MutantsChr. sitesReferences
1ms16L[5,6,7]22ms261S[24,25]
2ms29L[5,7]23ms281S[26]
3ms33L[8]24ms2910S[27]
4ms55L[5]25ms304L[28,29]
5ms77L[5,9,10,11]26ms312L[28]
6ms88L[5,12,13,14]27ms322L[30]
7ms91S [5,9,15]28ms332L[31,32]
8ms10/apv110L[4,5,9]29ms347L[33]
9ms1110L[5,9,16]30ms369L[34]
10ms121L[5,9]31ms373L[35]
11ms135S[5,9,15] 32ms382L[36]
12ms141S[5,9,17] 33Ms414L[37]
13ms171S[5] 34Ms425S[38]
14ms181[18]35ms438[26]
15ms199[18]36Ms444L[37,39]
16ms20ND[18]37ms459L[40]
17ms216[19] 38ms4710S[41]
18ms22/msca17S[20,21] 39ms489L[42]
19ms238S[22] 40ms4910[43]
20ms2410S[23] 41ms506L[44]
21ms259[24] 42ms5210[45]
表1  玉米细胞核雄性不育突变体及其染色体定位Table1 Maize genetic male-sterile mutants and their chromosome locations
GroupPhenotypeMutants
1. 花药特性缺陷型(1)小花中的花药缺失ms-si*355ems71990
(2)花粉囊细胞未分化msca1-ems63131msca1-ms6064
2. 花药结构缺陷型二室花药vlo-ems71924vlo-ems72032
3. 花药壁层数缺陷型(1)细胞层未分化ems63089mtm00-06, tcl1ems72063
(2)下表皮细胞超分化ocl4-mtm99-66
(3)中间层细胞超分化ems72091
(4)绒毡层细胞超分化ms*6015ms32ms32-ms6066ms23ems72063
(5)多核绒毡层细胞ems63265ems71777RescueMu-E03-23
4. 细胞壁成熟前降解型4.1 花药形态改变
(1)性母细胞与绒毡层降解ms8ms8-mtm99-56RescueMu-A60-22bems71884ems64486
(2)绒毡层液泡化降解ems71787RescueMu-P19-47
(3)绒毡层细胞皱缩降解ems71986RescueMu-C17-32RescueMu-A60-35A
4.2 功能缺陷
(1)胼胝质不沉积ms10
(2)胼胝质累积ms45-msN2499ms45-ems64409csmd1ms8ms8-mtm99-56
表2  玉米核雄性不育突变体的细胞学分类
No.Gene nameGene modelCoded proteinsReferences
1ms1, male sterility1*GRMZM2G180319LOB/LBD protein 30[6]
2ms7, male sterility7*GRMZM5G890224PHD-finger protein[11]
3ms8, male sterility8GRMZM2G119265Beta-1,3-galactosyltransferase[14]
4ms9, male sterility9GRMZM2G308204MYB transcription factor[15]
5ms22/msca1, male sterile converted anther1GRMZM2G442791Glutaredoxin[21]
6ms23, male sterility23GRMZM2G021276bHLH transcription factor[22]
7ms26, male sterlity26ZEMMB73_004940Cytochrome P450 monooxygenase,CYP704B1[24]
8ms30, male sterility30*GRMZM2G174782GDSL esterase/lipase protein[29]
9ms32, male sterility32GRMZM2G163233bHLH transcription factor[30]
10ms33, male sterility33*GRMZM2G070304GPAT protein[32]
11Ms44, male sterility44AC225727.3_FGT003Type C non-specific lipid transfer protein[39]
12ms45, male sterility45GRMZM2G139372Strictosidin synthase[40]
13Ocl4, outer cell layer4GRMZM2G123140HD-ZIP transcription factor[46]
14mac1, multiple archesporial cells1GRMZM2G027522Small secreted protein legend[47]
15ipe1, irregular pollen exine1GRMZM2G434500GMC oxidoreductase[3]
16apv1, abnormal pollen vacuolation1GRMZM5G830329Cytochrome P450 monooxygenase,CYP703A2[4]
表3  已经克隆的玉米核雄性不育基因
[1] Timofejeva L, Skibbe D S, Lee S, et al.Cytological characterization and allelism testing of anther developmental mutants identified in a screen of maize male sterile lines. G3 (Bethesda), 2013, 3(2): 231-249.
doi: 10.1534/g3.112.004465 pmid: 3564984
[2] Skibbe D S, Schnable P S.Male sterility in maize. Maydica, 2005, 50: 367-376.
[3] Chen X, Zhang H, Sun H, et al.IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiol, 2017, 173(1): 307-325.
doi: 10.1104/pp.16.00629 pmid: 28049856
[4] Somaratne Y, Tian Y, Zhang H, et al.ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. Plant J, 2017, 90(1): 96-110.
doi: 10.1111/tpj.13476 pmid: 28078801
[5] Albertsen M C, Phillips R L.Developmental cytology of 13 genetic male sterile loci in maize. Can J Genet Cytol, 1981, 23: 195-208.
doi: 10.1139/g81-023
[6] 万向元,吴锁伟,周岩,等. 植物花粉发育调控基因Ms1及其编码蛋白: 中国, ZL201410381072.5. 2017-06-16.[2017-08-19]..
Wan X Y, Wu S W, Zhou Y, et al.The DNA Sequence and the Coded protein of Ms1 Gene Which Controls the Male Fertility of Plants. Chinese, ZL201410381072.5. 2017-06-16.[2017-08-19]..
[7] Eyster L A.Heritable characters of maize. VII. Male sterile. Journal of Heredity, 1921, 12(3): 138-141.
doi: 10.1093/jhered/12.3.138
[8] Eyster W H.Heritable characters of maize XXXIX- Male sterile 3. Journal of Heredity, 1931, 22(4): 117-119.
doi: 10.1093/oxfordjournals.jhered.a103454
[9] Beadle G W.Genes in maize for pollen sterility. Genetics, 1932, 17: 413-431.
doi: 10.1007/BF02984694 pmid: 17246660
[10] Morton C M, Lawson D L, Bedinger P.Morphological study of the maize male sterile mutant ms7. Maydica, 1989, 34: 239-245.
[11] Zhang D, Wu S, An X, et al.Construction of a multi-control sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J.[2017-02-01]. https://doi.org/10.1111/pbi.12786.
doi: 10.1111/pbi.12786 pmid: 28678349
[12] Wang D, Adams C M, Fernandes J F, et al.A low molecular weight proteome comparison of fertile and male sterile 8 anthers of Zea mays. Plant Biotechnol J, 2012, 10(8): 925-935.
doi: 10.1111/j.1467-7652.2012.00721.x pmid: 22748129
[13] Wang D, Oses-Prieto J A, Li K H, et al. The male sterile 8 mutation of maize disrupts the temporal progression of the transcriptome and results in the mis-regulation of metabolic functions. Plant J, 2010, 63(6): 939-951.
doi: 10.1111/j.1365-313X.2010.04294.x pmid: 20626649
[14] Wang D, Skibbe DS and Walbot V. Maize Male sterile 8 (Ms8), a putative β-1,3-galactosyltransferase, modulates cell division, expansion, and differentiation during early maize anther development. Plant Reprod, 2013, 26(4): 329-338.
doi: 10.1007/s00497-013-0230-y pmid: 23887707
[15] Albertsen M, Fox T, Leonard A, et al.Cloning and Use of the ms9 Gene From Maize: US, US20160024520A1. 2016-01-28.[2017-08-19]..
[16] Kelliher T, Egger R L, Zhang H, et al.Unresolved issues in pre-meiotic anther development. Front Plant Sci, 2014, 5: 347.
doi: 10.3389/fpls.2014.00347 pmid: 4104404
[17] 余自青,吴锁伟,张丹凤,等. 玉米隐性核不育突变体ms14的遗传分析与基因定位. 中国生物工程杂志,2016, 36(10): 8-14.
doi: 10.13523/j.cb.20161002
Yu Z Q, Wu S W, Zhang D F, et al.Genetic analysis and gene mapping of recessive genic male sterility14 (ms14) mutant in maize. China Biotechnology, 2016, 36(10): 8-14.
doi: 10.13523/j.cb.20161002
[18] Eyster W H.Genetics of Zea mays. Bibliographia Genetica, 1934, 11: 187-192.
[19] Schwartz D.The interaction of nuclear and cytoplasmic factors in the inheritance of male sterility in maize. Genetics, 1951, 36(6): 676-696.
doi: 10.1016/j.tele.2007.01.004 pmid: 17247371
[20] Albertsen M C, Fox T, Trimnell M, et al.Msca1 Nucleotide Sequences Impacting Plant Male Fertility and Method of Using Same: US, US20090038027A1. 2009-02-05.[2017-08-19]. .
[21] Chaubal R, Anderson J R, Trimnell M R, et al.The transformation of anthers in the msca1 mutant of maize. Planta, 2003, 216(5): 778-788.
doi: 10.1007/s00425-002-0929-8 pmid: 12624765
[22] Nan G L, Zhai J, Arikit S, et al.MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development, 2017, 144(1): 163-172.
doi: 10.1242/dev.140673 pmid: 27913638
[23] Fox T, Trimnell M R and Albertsen M C. Male-sterile mutant ms24 mapped to chormosome 10. Maize Genet Coop Newsletter, 2002, 76: 37.
[24] Djukanovic V, Smith J, Lowe K, et al.Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Plant J, 2013, 76(5): 888-899.
doi: 10.1111/tpj.12335 pmid: 24112765
[25] Loukides C A, Broadwater A H, Bedinger P A.Two new male-sterile mutants of Zea mays (Poaceae) with abnormal tapetal cell morphology. American Journal of Botany, 1995, 87(8): 1017-1023.
doi: 10.2307/2446231
[26] Golubovskaya I N.Mapping of two mei-genes of maize wtih the help of B-A translocations. Soviet Genetics, 1987, 23: 473-480.
[27] Trimnell M R, Fox T W, Albertsen M C.New chromosome 10S male-sterile mutant: ms29. Maize Genet Coop Newsletter, 1998, 72: 37.
[28] Trimnell M R, Fox T W, Albertsen M C.New chromosome 2L male-sterile mutants: ms30 and ms31. Maize Genet Coop Newsletter, 1998, 72: 38.
[29] 万向元,吴锁伟,周岩,等.一种玉米花粉减数分裂后发育调控基因Ms30 的DNA 序列及其编码蛋白,中国,ZL201410703778.9.2017-04-12.[2017-08-19]. .
Wan X Y, Wu S W, Xie K, et al.The DNA Sequence and the Coded Protein of a Pollen Post-meiotic Developmental Gene Ms30 in Maize: China,ZL201410703778.9.2017-04-12.[2017-08-19]. .
[30] Moon J, Skibbe D, Timofejeva L, et al.Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. Plant J, 2013, 76(4): 592-602.
doi: 10.1111/tpj.12318 pmid: 24033746
[31] Trimnell M R, Patterson E, Fox T W, et al.New chromosome 2L male-sterile mutant: ms33 and alleles. Maize Genet Coop Newsletter, 1999, 73: 48.
[32] 万向元,吴锁伟,张丹凤,等.玉米花粉发育调控基因Ms33 的DNA 序列及其编码蛋白:中国,CN201610880590.0.2017-02-15.[2017-08-19]..
Wan X Y, Wu S W, Zhang D F, et al.The DNA Sequence and the Coded protein of a Pollen Developmental Gene Ms33 in Maize. China, CN201610880590.0.2017-02-15.[2017-08-19]..
[33] Trimnell M R, Patterson E, Fox T W, et al.New chromosome 7L male-sterile mutant: ms34. Maize Genet Coop Newsletter, 1999, 73: 49.
[34] Trimnell M R, Patterson E, Fox T W, et al.New chromosome 9L male-sterile mutants: ms35 and ms36. Maize Genet Coop Newsletter, 1999, 73: 49.
[35] Trimnell M R, Fox T W, Albertsen M C.New chromosome 7L male-sterile mutant: ms37. Maize Genet Coop Newsletter, 1999, 73: 48.
[36] Albertsen M C, Fox T W, Trimnell M R.Changing a duplicated designation for two different male-sterile mutations. Maize Genet Coop Newsletter, 1999, 73: 48.
[37] Albertsen M C, Sellner L M.An independent, EMS-induced dominant male sterile that maps similar to Ms41. Maize Genet Coop Newsletter, 1988, 62: 70.
[38] Albertsen M C, Fox T W, Trimnell M R, et al.Interval mapping a new dominant male-sterile mutant, Ms42. Maize Genet Coop Newsletter, 1993, 67: 64.
[39] Fox T, DeBruin J, Haug Collet K, et al. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnol J, 2017, 15(8): 942-952.
doi: 10.1111/pbi.12689 pmid: 28055137
[40] Cigan A M, Unger E, Xu R J, et al., Phenotypic complementation of ms45 maize requires tapetal expression of MS45. Sex Plant Reprod, 2001, 14(3): 135-142.
doi: 10.1007/s004970100099
[41] Trimnell M R, Fox T W, Albertsen M C.New chromosome 10 male-sterile mutant: ms47. Maize Genet Coop Newsletter, 2002, 76: 38.
[42] Trimnell M R, Fox T W, Albertsen M C.New chromosome 9L male-sterile mutant: ms48. Maize Genet Coop Newsletter, 2002, 76: 38.
[43] Trimnell M R, Fox T W, Albertsen M C.New chromosome 10 male-sterile mutant: ms49. Maize Genet Coop Newsletter, 2002, 76: 38-39.
[44] Trimnell M R, Fox T W, Albertsen M C.New chromosome 6L male-sterile mutant: ms50. Maize Genet Coop Newsletter, 2002, 76: 39.
[45] Trimnell M R, Fox T W, Albertsen M C.New chromosome 4 male-sterile mutant: ms52. Maize Genet Coop Newsletter, 2004, 78: 27.
[46] Vernoud V, Laigle G, Rozier F, et al.The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. Plant J, 2009, 59(6): 883-894.
doi: 10.1111/j.1365-313X.2009.03916.x pmid: 19453441
[47] Wang C J, Nan G L, Kelliher T, et al.Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development, 2012, 139(14): 2594-2603.
doi: 10.1242/dev.077891 pmid: 22696296
[48] Wang D, Skibbe D S,Walbot V.Maize csmd1 exhibits pre-meiotic somatic and post-meiotic microspore and somatic defects but sustains anther growth. Sex Plant Reprod, 2011, 24(4): 297-306.
doi: 10.1007/s00497-011-0167-y pmid: 21475967
[49] 李竞雄,周洪生,孙荣锦. 玉米雄性不育生物学. 北京:中国农业出版社, 1998: 67-154.
Li J, Zhou H, Sun R.Biology of Male Sterility in Maize. Beijing: China Agriculture Press, 1998: 67-154.
[50] Cigan A M, Albertsen M C.Reversible Nuclear Genetic System for Male Sterility in Transgenic Plants, US: US6281348B1,2001-08-28.[2017-08-19].
[51] Albertsen M C, Beach LR, Howard J, et al.Nucleotide Sequences Mediated male Fertility and Method of Using Same, United States: US005478369A. 1995-12-26.[2017-08-19]..
[52] Wu Y, Fox T W, Trimnell M R, et al.Development of a Novel Recessive Genetic Male Sterility System for Hybrid Seed Production in Maize and Other Cross-pollinating Crops. Plant Biotechnol J, 2016, 14(3): 1046-1054.
doi: 10.1111/pbi.12477 pmid: 26442654
[53] Cigan A M, Singh M, Benn G, et al.Targeted mutagenesis of a conserved anther-expressed P450 gene confers male sterility in monocots. Plant Biotechnol J, 2017, 15(3): 379-389.
doi: 10.1111/pbi.12633 pmid: 5316918
[54] Svitashev S, Schwartz C, Lenderts B, et al.Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications, 2016, 7: 13274.
doi: 10.1038/ncomms13274 pmid: 27848933
[55] Gomez J F, Talle B, Wilson Z A.Anther and pollen development: A conserved developmental pathway. J Integr Plant Biol, 2015, 57(11): 876-891.
doi: 10.1111/jipb.12425 pmid: 4794635
[56] Fernández Gómez J, Wilson Z A.A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. Plant Biotechnol J, 2014, 12(6): 765-777.
doi: 10.1111/pbi.12181 pmid: 24684666
[1] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[2] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[3] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[4] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[5] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[6] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[7] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[8] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[9] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[10] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[11] 王友华,邹婉侬,柳小庆,王兆华,孙国庆. 全球转基因玉米专利信息分析与技术展望 *[J]. 中国生物工程杂志, 2019, 39(12): 83-94.
[12] 苏爱国,宋伟,王帅帅,赵久然. 玉米细胞质雄性不育及其育性恢复基因的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 108-114.
[13] 吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.
[14] 田有辉,万向元. 玉米花药发育的细胞生物学与分子遗传学的研究方法[J]. 中国生物工程杂志, 2018, 38(1): 88-99.
[15] 李生. 金属离子对细胞自噬的诱导作用[J]. 中国生物工程杂志, 2017, 37(7): 124-132.