Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (2): 65-70    DOI: 10.13523/j.cb.20140211
技术与方法     
免疫共沉淀结合基因芯片对m3G帽子结构RNA的分离鉴定
贾栋1, 张彬2, 马瑞燕1, 唐贵刚1, 赵捷1, 王文华1, 周琳1
1. 山西农业大学农学院 太谷 030801;
2. 山西农业大学园艺学院 太谷 030801
Determination of the Structure of m3G Cap RNA by Co-immunoprecipitation and Microarray
JIA Dong1, ZHANG Bin2, MA Rui-yan1, TANG Gui-gang1, ZHAO Jie1, WANG Wen-hua1, ZHOU Lin1
1. College of Agriculture, Shanxi Agricultural University, Taigu 030801, China;
2. College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
 全文: PDF(407 KB)   HTML
摘要: 目的:通过免疫共沉淀和基因芯片技术,建立一种RNA 5’端帽子结构的鉴定方法。方法:利用m3G帽子结构的特异性抗体对线虫的总RNA进行免疫共沉淀,为线虫127个非编码RNA设计探针,制备了检测基因芯片,对其帽子结构进行鉴定,并对RNA的转录进行分析。结果:37个非编码RNA被分离鉴定为含有m3G帽子结构,与其它物种已发现m3G 帽子的RNA比较,结果基本一致。结论:免疫共沉淀结合基因芯片技术对非编码RNA 5’端帽子结构分离鉴定的方法是可行有效的。此方法特异性强,灵敏度高,对大规模RNA帽子结构的鉴定、新RNA的发现和RNA功能的鉴定都具有一定的参考和应用价值。
关键词: RNA帽子结构鉴定免疫共沉淀基因芯片    
Abstract: Objective:To establish a protocol to determine the structure of RNA 5'end cap by using co-immunoprecipitation(Co-IP) in conjunction with microarray technology. Methods: Total RNAs isolated from Caenorhabditis elegans were precipitated with the antibody against M3G cap structure. For Microarray analysis, the probes were designed for 127 non-coding RNAs (ncRNAs) of C.elegans. The cap structure was determined and RNA transcription was also analyzed. Results: 37 ncRNAs was isolated and identified as containing m3G cap structure. This number is similar with other species, for which m3G cap RNAs have been found. Conclusions: It is feasible and effective to determine the structure of ncRNA 5' end cap by using Co-IP followed by Microarray analysis. This method is of great specificity and high sensitivity, which maybe applied to the large-scale RNA cap structure identification, the discovery of novel RNA and the identification of RNA functions.
Key words: RNA    Cap structure    Determination    Immunoprecipitation    Microarray
收稿日期: 2013-11-04 出版日期: 2014-02-25
ZTFLH:  Q522  
基金资助: 高等学校博士学科点专项科研基金(20111403110004)资助项目
通讯作者: 贾栋     E-mail: biodong@foxmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
贾栋
张彬
马瑞燕
唐贵刚
赵捷
王文华
周琳

引用本文:

贾栋, 张彬, 马瑞燕, 唐贵刚, 赵捷, 王文华, 周琳. 免疫共沉淀结合基因芯片对m3G帽子结构RNA的分离鉴定[J]. 中国生物工程杂志, 2014, 34(2): 65-70.

JIA Dong, ZHANG Bin, MA Rui-yan, TANG Gui-gang, ZHAO Jie, WANG Wen-hua, ZHOU Lin. Determination of the Structure of m3G Cap RNA by Co-immunoprecipitation and Microarray. China Biotechnology, 2014, 34(2): 65-70.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140211        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I2/65

[1] Ro-Choi T S. Nuclear snRNA and nuclear function(discovery of 5'cap structures in RNA). Critical Review in Eukaryotic Gene Expression, 1999, 9(2):107-158.
[2] Nilsen T W. Evolutionary origin of SL-addition trans-splicing: still an enigma. Trends in Genetics, 2001, 17(12):678-680.
[3] Adam W, Megan E F, Bethany V, et al. The nematode eukaryotic translation initiation factor 4E/G complex works with a trans-spliced leader stem-loop to enable efficient translation of trimethylguanosine-capped RNAs. Molecular and Cellular Biology, 2010, 30(8):1958-1970.
[4] Huber J, Cronshagen U, Kadokura M, et al. Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. The EMBO Journal, 1998, 17:4114-4126.
[5] Cougot N, Van D E, Babajko S, et al. Cap-tabolism. Trends Biochem Sci, 2004, 29: 436-444.
[6] Hernandez N. Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. Journal of Biological Chemistry, 2001, 276:26733-26736.
[7] Chang J, Schwer B, Shuman S. Mutational analyses of trimethylguanosine synthase (Tgs1) and Mud2: proteins implicated in pre-mRNA splicing. RNA, 2010, 16:1018-1031.
[8] Hamma J, Darzynkiewiczb E, Taharac S M, et al. The trimethylguanosine cap structure of U1 snRNA is a component of a bipartite nuclear targeting signal. Cell, 1990, 62(3):569-557.
[9] Fischer U, Luhrmann R. An essential signaling role for the m3G cap in the transport of U1 snRNP to the nucleus. Science, 1990, 249(4970):786-790.
[10] Saponara A G, Enger M D. Occurrence of N2,N2,7-trimethylguanosine in minor RNA species of a mammalian cell line. Nature, 1969, 223(5213):1365-1366.
[11] Yuen Ho A G, Adrian H, Gary D B, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 2002, 415(6868):180-183.
[12] Bochnig P, Reuter R, Bringmann P, et al.A monoclonal antibody against 2,2,7-trimethylguanosine that reacts with intact, class U, small nuclear ribonucleoproteins as well as with 7-methylguanosine-capped RNAs. European Journal of Biochemistry,1987, 168(2):461-467.
[13] He H, Wang J, liu T, et al. Mapping the C.elegans noncoding transcriptome with a whole-genome tilling microarray. Genome Research, 2007,17:1471-1477.
[14] Rouillard J M, Zuker M Gulari E. OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. Nucleic Acids Research, 2003, 31(12):3057-3062.
[15] Deng W, Zhu X, Skogerbo G, et al. Organization of the Caenorhabditis elegans small non-coding transcriptome: Genomic features, biogenesis, and expression. Genome Research, 2006, 16:20-29.
[16] He H, Cai L, Skogerbo G, et al. Profiling Caenorhabditis elegans non-coding RNA expression with a combined microarray. Nucleic Acids Research, 2006, 34(10):297-298.
[17] Maroney PA, Yu Y T, Jankowska M, et al. Direct analysis of nematode cis-and trans-spliceosomes: a functional role for U5 snRNA in spliced leader addition trans-splicing and the identification of novel Sm snRNPs. RNA, 1996, 2(8):735-745.
[18] Macmorris M, Kumar M, Lasda E, et al. A novel family of C.elegans snRNPs contains proteins associated with trans-splicing. RNA, 2007, 13(4):511-520.
[19] Terns M, Dahlberg J. Retention and 5' cap trimethylation of U3 snRNA in the nucleus. Science, 1994, 264(5161):959-961.
[20] Beate S, Hediye E B, Stewart S. Composition of yeast snRNPs and snoRNPs in the absence of trimethylguanosine caps reveals nuclear cap binding protein as a gained U1 component implicated in the cold-sensitivity of tgs1 cells. Nucleic Acids Research, 2011,39(15):6715-6728.
[21] Branlant C, Krol A, Ebel J P, et al. U2 RNA shares a structural domain with U1, U4, and U5 RNAs. EMBO Journal, 1982, 1(10):1259-1265.
[22] Lobo S, Lister J, Sullivan M, et al. The cloned RNA polymerase II transcription factor IID selects RNA polymerase III to transcribe the human U6 gene in vitro. Genes & Development, 1991, 5(8):1477-1489.
[23] Kunkel G R, Maser R L, Calvet J P, et al. U6 small nuclear RNA is transcribed by RNA polymerase III. PNAS, 1986, 83(22):8575-8579.
[24] Darzacq X, Jády B E, Verheggen C, et al. Cajal body-specific small nuclear RNAs: a novel class of 2'-O-methylation and pseudouridylation guide RNAs.The EMBO Journal, 2002, 21:2746-2756.
[25] Huber J, Cronshagen U, Kadokura M, et al. Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. The EMBO Journal, 1998, 17:4114-4126.
[26] Hinas A, Larsson P, Avesson L, et al.Identification of the major spliceosomal RNAs in dictyostelium discoideum reveals developmentally regulated U2 variants and polyadenylated snRNAs. Eukaryotic Cell, 2006, 5(6):924-934.
[27] Thomas M, Achim D, Ralf F. Structural basis for m7-cap hypermethylation of small nuclear, small nucleolar and telomerase RNA by the dimethyltransferase TGS1. Nucleic Acids Research, 2009, 37(12):3865-3877.
[28] Speckmann W A, Terns R M, Terns M P. The Box C/D motif directs snoRNA 5'-cap hypermethylation. Nucleic Acids Research, 2000, 28(22):4467-4473.
[1] 杨万斌,徐燕,卓士铉,王心怡,李雅静,郭一凡,张正光,郭园园. 长链非编码RNA相关表观遗传修饰在癌症中的进展*[J]. 中国生物工程杂志, 2021, 41(8): 59-66.
[2] 冯昭,李江浩,王佳华. 刺槐核糖体蛋白同源基因RpRPL22在共生结瘤过程中功能研究[J]. 中国生物工程杂志, 2021, 41(7): 10-21.
[3] 刘少金,冯雪娇,王俊姝,肖正强,程平生. 我国核酸药物市场分析及对策建议[J]. 中国生物工程杂志, 2021, 41(7): 99-109.
[4] 颜愈佳,邹玲. piRNA生物学起源及功能研究进展[J]. 中国生物工程杂志, 2021, 41(5): 45-50.
[5] 段阳阳,张凤亭,成江,石瑾,杨娟,李海宁. SIRT2抑制对MPP+诱导的帕金森病细胞模型凋亡和线粒体动态平衡的影响*[J]. 中国生物工程杂志, 2021, 41(4): 1-8.
[6] 廖丹妮,张昭旸,靳瑾,李霞,贾斌. 微生物tRNA与密码子系统应用研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 64-73.
[7] 刘美琴,高博,焦月盈,李玮,虞结梅,彭向雷,郑妍鹏,付远辉,何金生. 人呼吸道合胞病毒感染的A549细胞中长链非编码RNA表达谱研究[J]. 中国生物工程杂志, 2021, 41(2/3): 7-13.
[8] 杨若南,许丽,徐萍,苏燕. RNA疗法产业发展态势分析及建议 *[J]. 中国生物工程杂志, 2021, 41(2/3): 162-171.
[9] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[10] 唐德平,邢梦洁,宋文涛,姚慧慧,毛爱红. microRNA治疗在癌症及其他疾病中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 64-73.
[11] 卜恺璇,周翠霞,路福平,朱传合. 细菌转录起始调控机制*[J]. 中国生物工程杂志, 2021, 41(11): 89-99.
[12] 陈雪艳,张娜,陈娟,杨艳红,张巨峰. Hsa-miR-411-3P对胃癌细胞作用功能及相关分子机制的研究 *[J]. 中国生物工程杂志, 2020, 40(4): 1-9.
[13] 王柯茹,朱鸿亮. 植物细胞器RNA编辑因子的功能及其作用机制 *[J]. 中国生物工程杂志, 2020, 40(3): 125-131.
[14] 井汇源,段二珍,董望. 体外转录的自我复制型mRNA疫苗研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 25-30.
[15] 王国强,于茵茵,曾华辉,王旭东,吴玉彬,尚立芝,李玉林,张怡青,张西西,张振强,王云龙. 基于MS2噬菌体病毒样颗粒的RT-PCR检测新型冠状病毒(SARS-CoV-2)质控品制备*[J]. 中国生物工程杂志, 2020, 40(12): 31-40.