Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (01): 35-39    
研究报告     
谷氨酸棒杆菌H+-ATPase基因失活提高谷氨酸产生量
张博, 李铁民, 杨智勇, 胡永飞, 李玉
辽宁大学生命科学院 沈阳 110036
Overproduction of Glutamic Acid in Corynebacterium glutamicum with H+-atp Inactivation
ZHANG Bo, LI Tie-min, YANG Zhi-yong, HU Yong-fei, LI Yu
School of Life Science, Liaoning University, Shenyang 110036, China
 全文: PDF(432 KB)   HTML
摘要:

为了证实在谷氨酸棒杆菌中,利用H+-ATPase基因失活构建高产谷氨酸基因工程菌的应用可行性,通过重组PCR技术部分缺失H+-ATPaseγ亚基基因序列,采用插入失活方法构建H+-ATPase失活的谷氨酸棒杆菌。考察了其谷氨酸产生能力及对生长速率的影响。实验结果表明,H+-ATPase失活的谷氨酸棒杆菌在含有100g/L的葡萄糖培养基中摇瓶发酵,其谷氨酸最大累积量为51.6g/L, 比野生菌株提高了42.9%。生长速率研究结果表明,H+-ATPase失活的谷氨酸棒杆菌生长速率略低于野生谷氨酸棒杆菌。证实了H+-ATPase基因失活对提高谷氨酸产量的作用,为利用H+-ATPase基因构建高产谷氨酸基因工程菌株提供了科学依据。

关键词: 谷氨酸棒杆菌谷氨酸插入失活H+-ATPase基因生长速率    
Abstract:

In order to confirm the application feasibility of overproduction of glutamic acid in C. glutamicum with H+-ATP inactivation in the construction of genetically modified bacteria. The sequence encoding H+-ATPase γ subunit in C.glutamicum ATCC13032 was partially deleted by crossover PCR, and the mutant, in which H+-atp gene was inactivated, was obtained by insertion inactivation. The glutamic acid production and growth rate of the mutant were tested. The results showed that the maximum production of glutamic acid of the mutant was 51.6 g/L in 100 g/L glucose culture medium, with 42.9 % increase in contrast to the wild parent strain, and that growth rate of the mutant in measurement of the growth curves was lower than wild parent strain. The results suggest that H+-atp gene inactivated in C.glutamicum increases glutamic acid production, and slightly reduces growth rate of the bacteria.

Key words: Corynebacterium glutamicum    Glutamic acid    Gene inactivation    H+-ATPase gene    Growth rate
收稿日期: 2010-08-02 出版日期: 2011-01-25
ZTFLH:  Q789  
基金资助:

辽宁省科技厅自然科学基金(20082501)、沈阳市科技局计划(1091187-1-00)资助项目

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张博
李铁民
杨智勇
胡永飞
李玉

引用本文:

张博, 李铁民, 杨智勇, 胡永飞, 李玉. 谷氨酸棒杆菌H+-ATPase基因失活提高谷氨酸产生量[J]. 中国生物工程杂志, 2011, 31(01): 35-39.

ZHANG Bo, LI Tie-min, YANG Zhi-yong, HU Yong-fei, LI Yu. Overproduction of Glutamic Acid in Corynebacterium glutamicum with H+-atp Inactivation. China Biotechnology, 2011, 31(01): 35-39.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I01/35


[1] Engelbrechft S, Junge W. ATP synthase: a tentative structural model. FEBS Lett, 1997, 414 (3): 485-491.

[2] Senior A E. The proton-translocating ATPase of Escherichia coli. Annu Rev Biophys Chem, 1990, 19: 7-41.

[3] Kobayashi H. A proton-translocating ATPase regulates pH of the bacterial cytoplasm. J Biol Chem, 1985, 260(1): 72-76.

[4] Causey T B, Zhou S, Shanmugam K T. et al. Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoacetate production. Proc Natl Acad Sci USA, 2003, 100(3): 825-832.

[5] Causey T B, Shanmugam K T, Yomano L P, et al. Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc Natl Acad Sci USA, 2004, 101(8): 2235-2240.

[6] Wada M, Narita K, Yokota A. Alanine production in an H+-ATPase and lactate dehydrogenase defective mutant of Escherichia coli expressing alanine dehydrogenase. Appl Microbiol Biotechnol, 2007, 76(4): 819-825.

[7] Santana M, Ionescu M S, Vertes A, et al. Bacillus subtilis FOF1 ATPase: DNA Sequence of the atp Operon and Characterization of atp Mutants. J Bacteriol, 1994, 176(22): 6802-6811.

[8] Sekine H, Shimada T, Hayashi C, et al. H+-ATPase defect in Corynebacterium glutamicum abolishes glutamic acid production with enhancement of glucose consumption rate. Appl Microbiol Biotechnol, 2001, 57(4):534-540.

[9] Aoki R, Wada M, Takesue N, et al. Enhanced Glutamic Acid Production by a H+-ATPase-Defective Mutant of Corynebacterium glutamicu. Biosci Biotechnol Biochem, 2005, 69 (8): 1466-1472.

[10] Dorella F A, Estevam E M, Cardoso P G, et al. An improved protocol for electrotransformation of Corynebacterium pseudotuberculosis. Vet Microbiol, 2006, 114(3-4): 298-303.

[11] 天津轻工业学院,大连轻工业学院,无锡轻工大学,等.工业发酵分析.北京:中国轻工业出版社,2004.97-99. Tianjin University of Light Industry. Analysis of Industrial Fermentation.Beijing:Light Industry Press of China, 2004.97-99.

[12] 沈萍,范秀容,李广武.微生物学实验.第三版,北京:高等教育出版社,1999.258-261. Shen P,Fan X R, Li G W. Experiment of Microorganism.3rd ed,Beijing: Higher Education Press,1999.258-261.

[13] Mller D, Schauder R, Fuchs G, et al. Acetate oxidation to CO2 via a citric acid cycle involving an ATP-citrate lyase: A mechanism for the synthesis of ATP via substrate level phosphorylation in Desulfobacter postgatei growing on acetate and sulfate. Arch Microbiol, 1987, 148(3): 202-207.

[14] Yokota A, Henmi M, Takaoka N, et al. Enhancement of glucose metabolism in a pyruvic acid-hyperproducing Escherichia coli mutant defective in F1-ATPase activity. J Ferment Bioeng, 1997, 83(2): 132-138.

[1] 朱亚鑫, 段艳婷, 高宇豪, 王籍阅, 张晓梅, 张晓娟, 徐国强, 史劲松, 许正宏. 不同D/L单体比γ-聚谷氨酸的合成与调控[J]. 中国生物工程杂志, 2021, 41(1): 1-11.
[2] 徐硕,卢文玉. 谷氨酸棒状杆菌异源合成萜类化合物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 91-96.
[3] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.
[4] 王文静,杨丽玉,刘婵娟,赵进,罗勤. 谷氨酸脱氢酶缺失对单核细胞增生李斯特菌生物被膜、毒力及胞外蛋白表达的影响 *[J]. 中国生物工程杂志, 2018, 38(9): 1-11.
[5] 方媛,徐广贤,王羡,王红霞,潘俊斐. 双峰驼源天然噬菌体纳米抗体展示库的构建及抗GDH纳米抗体筛选 *[J]. 中国生物工程杂志, 2018, 38(12): 49-56.
[6] 贺霖伟, 刘璋敏, 冯雁, 崔莉. 谷氨酸依赖型氨基转移酶的高通量筛选方法及其应用[J]. 中国生物工程杂志, 2017, 37(8): 59-65.
[7] 赵爽, 刘柳, 吴林寰, 马俊才. 谷氨酸棒状杆菌技术研发态势分析[J]. 中国生物工程杂志, 2016, 36(9): 101-109.
[8] 万方, 陈民良, 张斌, 陈进聪, 陈雪岚. 代谢工程改造微生物高产氨基酸的策略[J]. 中国生物工程杂志, 2015, 35(3): 99-103.
[9] 李小鑫, 高明昊, 张苗苗, 刘晓晨, 乔长晟. 溶解氧对γ-聚谷氨酸合成的影响[J]. 中国生物工程杂志, 2015, 35(3): 42-48.
[10] 李明珠, 韩伟东, 邢光慧, 滕珍林, 薛国梅, 侯辰瑞, 阮宏强, 陈薇. N端焦谷氨酸环化封闭类单克隆抗体药物的N端测序方法[J]. 中国生物工程杂志, 2013, 33(8): 75-83.
[11] 卢婵, 郑璞, 孙志浩. L-谷氨酸氧化酶的克隆表达、纯化及酶学性质研究[J]. 中国生物工程杂志, 2013, 33(6): 38-44.
[12] 陈宽婷, 姚俊, 阮文辉, 魏钦俊, 鲁雅洁, 曹新. 新型γ-聚谷氨酸自组装纳米胶束的制备及用于蛋白载体的研究[J]. 中国生物工程杂志, 2013, 33(4): 101-105.
[13] 张文, 张树清, 马晓彤, 何翠翠. 纳豆芽孢杆菌(Bacillus natto)发酵生产γ-聚谷氨酸过程中培养基组分的优化[J]. 中国生物工程杂志, 2013, 33(11): 44-50.
[14] 叶菁, 许敬亮, 肖波, 袁振宏, 徐惠娟, 杨柳, 李谢昆. 谷氨酸棒杆菌戊糖代谢利用研究进展[J]. 中国生物工程杂志, 2012, 32(11): 132-136.
[15] 叶菁, 许敬亮, 肖波, 袁振宏, 徐惠娟, 杨柳, 李谢昆. 谷氨酸棒杆菌戊糖代谢利用研究进展[J]. 中国生物工程杂志, 2012, 32(11): 132-136.