Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (12): 49-56    DOI: 10.13523/j.cb.20181207
技术与方法     
双峰驼源天然噬菌体纳米抗体展示库的构建及抗GDH纳米抗体筛选 *
方媛1,徐广贤1,2,**(),王羡1,王红霞1,潘俊斐1
1 宁夏医科大学临床医学院 银川 750004
2 宁夏医科大学总医院 银川 750004
Construction of Camelid Natural Nanobody Phage Display Library and Screening for Anti-GDH Nanobody
FANG Yuan1,XU Guang-xian1,2,**(),WANG Xian1,WANG Hong-xia1,PAN Jun-fei1
1 Clinical Medical Colleges,Ningxia Medical University,Yinchuan 750004,China
2 General Hospital of Ningxia Medical University,Yinchuan 750004,China
 全文: PDF(1253 KB)   HTML
摘要:

目的构建噬菌体天然纳米抗体展示库,以期用于筛选不同抗原分子的纳米抗体筛选平台,并用艰难梭菌谷氨酸脱氢酶(GDH)抗原筛选靶向GDH的纳米抗体,对所构建的噬菌体天然纳米抗体展示库进行验证。方法 采用Oligo DT提取双峰骆驼脾脏总RNA进行反转录,通过巢氏PCR获取全套重链可变区基因,将其构建到噬菌粒pCANTAB5E载体,经多次电转化至E.coil TG1构建初级噬菌体抗体库,经辅助噬菌体拯救后构成噬菌体展示库,并对噬菌体展示库的库容及多样性进行分析和鉴定。同时以GDH为靶向抗原对文库进行淘筛,计算淘筛回收率,并对第三轮淘筛后平板的单克隆进行ELISA鉴定。结果 构建的天然噬菌体纳米抗体库的插入率为95%左右,随机挑取的9个克隆氨基酸同源性为66.17%,经MEGA分析后具有较好的多样性,同时经辅助噬菌体拯救后,得到的噬菌体展示库滴度为4×10 12CFU/ml。在三轮淘筛过程中,回收率逐步升高,噬菌体得到了有效的富集,同时对阳性克隆进行测序及分析,最终得到2条抗GDH纳米抗体序列。 结论 成功构建了双峰驼源天然噬菌体纳米抗体展示文库且多样性良好,为后续筛选其他的靶向抗原奠定了基础,同时筛选获得两条抗GDH纳米抗体序列,为制备艰难梭菌谷氨酸脱氢酶诊断抗体提供技术支撑。

关键词: 纳米抗体噬菌体展示技术艰难梭菌谷氨酸脱氢酶    
Abstract:

Objective To construct a natural nanobody phage display library as a nanobody platform for screening different antigens.Using GDH antigen to screen and obtain single domain antibody variable region gene (VHH) of the camel targeting GDH.Methods: Isolate the total RNA from the camel by using Oligo DT and synthesize the cDNA.The genes of variable domain of heavy chain(VHH) were amplified by nested PCR,and then were ligated with the vector pCANTAB5E.Next the recombinant vector cloned into TG1 to construct the phage display library ,and make the analysis and identification for the library.Using GDH to screening anti-GDH nanobodies,and identified the monoclonal by phage-ELISA.Result: The positive rate of the phage display library is 95%,the amino acid homology of nine randomly colonies is 66.17%,and it has a good variety after MEGA analyzing.After helper phage rescue,the titer of the phage display library is 4×10 12CFU/ml.And after three times round of screening,it showed significant enrichment of binding phage.In the end,two nanobodies sequence were obtained by sequencing positive clonoies. Conclusion: Successfully constructed a natural camelid nanobody phage display library,and the good diversity laid a foundation for selecting other nanobodies.Two GDH specific sequences derived from camel are obtained through phage display library,which can be used to prepare the diagnostic antibodies.

Key words: Nanobodies    Phage display technology    GDH
收稿日期: 2018-07-30 出版日期: 2019-01-10
ZTFLH:  Q511  
基金资助: * 宁夏回族自治区重点研发计划重大(重点)项目(2018BEG02002);* 宁夏科技创新领军人才培养项目(KJT2015020)
通讯作者: 徐广贤     E-mail: 599040064@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
方媛
徐广贤
王羡
王红霞
潘俊斐

引用本文:

方媛,徐广贤,王羡,王红霞,潘俊斐. 双峰驼源天然噬菌体纳米抗体展示库的构建及抗GDH纳米抗体筛选 *[J]. 中国生物工程杂志, 2018, 38(12): 49-56.

FANG Yuan,XU Guang-xian,WANG Xian,WANG Hong-xia,PAN Jun-fei. Construction of Camelid Natural Nanobody Phage Display Library and Screening for Anti-GDH Nanobody. China Biotechnology, 2018, 38(12): 49-56.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20181207        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I12/49

引物 序列
CALL001 5'-GTCCTGGCTGCTCTTCTACAAAG-3'
CAll002 5'-GGTACGTGCTGTTGAACTGTTCC-3'
VHH-Forward 5'-TCGCGGCCCAGCCGGCCCAGGTCCAACTGCAGGAGTCTGGGG-3'
VHH-Reverse 5'-ATAAGAATGCGGCCGCTGAGGAGACGGTGACCTGGGTCCCC-3'
表1  巢氏PCR反应引物设计
图1  第一轮PCR琼脂糖凝胶电泳图
图2  第二轮PCR琼脂糖凝胶电泳图
图3  倍比稀释法测定救援后的噬菌体展示文库滴度
图4  菌落PCR鉴定噬菌体抗体展示库插入率
图5  MEGA系统进化树分析
图6  VHH抗体库中9个随机克隆氨基酸多序列分析
轮次 投入量
(CFU/ml)
洗脱量
(CFU/ml)
回收率
1 4×1012 1.5×104 3.8×10-9
2 3×109 7.0×104 2.3×10-5
3 1×109 5.0×106 5.0×10-3
表2  三轮筛选后噬菌体的富集度变化
图7  Phage-ELISA 检测噬菌体多克隆上清
图8  噬菌体单克隆ELISA鉴定及A450较高样品孔
[1] Gong R, Chen W, Dimitrov D S . Expression,purification,and characterization of engineered antibody CH2 and VH domains. Methods in Molecular Biology, 2012,899:85-102.
doi: 10.1007/978-1-61779-921-1_6 pmid: 22735948
[2] Muyldermans S, Baral T N, Cortez Retamozzo V , et al. Camelid immune-globulins and nanobody technology. Vet Immunol Immunopathol, 2009,128:178-183.
doi: 10.1016/j.vetimm.2008.10.299 pmid: 19026455
[3] Beghein E, Gettemans J . Nanobody technology:A versatile toolkit for microscopic imaging,protein-protein interaction analysis,and protein function exploration. Frontiers in Immunology, 2017,8:771-774.
doi: 10.3389/fimmu.2017.00771 pmid: 28725224
[4] Vincke C, Loris R, Saerens D , et al. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. Journal of Biological Chemistry, 2009,284(5):3273-3284.
doi: 10.1074/jbc.M806889200 pmid: 19010777
[5] Luciano J A, Zuckerbraun B S . Clostridium difficile infection: prevention,treatment,and surgical management. Surg Clin North Am, 2014,94(6):1335-1349.
doi: 10.1016/j.suc.2014.08.006 pmid: 25440127
[6] Planche T, Wilcox M H . Diagnostic pitfalls in Clostridium difficile infection. Infect Dis Clin North Am, 2015,29(1):63-82.
doi: 10.1016/j.idc.2014.11.008 pmid: 25595842
[7] Ticehuist J R, Aird D Z, Dam L M , et al. Effective detection of toxigenic clostridium difficile by a two-step algorithm including tests for antigen and cytotoxin. Journal of Clinical Microbiology, 2006,44(3):1145.
doi: 10.1021/bi061345i pmid: 16517916
[8] Kim J, Pai H, Seo M , et al. Epidemiology and clinical characteristics of clostridium difficile infection in a korean tertiary hospital. Journal of Korean Medical Science, 2011,26(10):1258.
doi: 10.3346/jkms.2011.26.10.1258 pmid: 3192334
[9] Yillib SV . “Camel nanoantibody” is an efficient tool for research,diagnostics and therapy. Mol Biol(Mosk), 2011,45(1):77-85.
doi: 10.1134/S0026893311010134 pmid: 21485499
[10] Sambrook J, Russell D W. Molecular cloning:a laboratory manual. 3rd ed . New York:Cold Spring Harbor Laboratory Press, 2002: 99-102.
[11] Jahnichen S, Blanchetot C, Maussang D , et al. CXCR4 nanobodies (VHH-based single variable domians)potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(47):20 565-20 570.
[12] Groot A J, Verheesen P, Westerlaken E J , et al. Identification by phage display of single-domain antibody fragments specific for the ODD domain in hypoxia-inducible factor 1alpha.Laboratory Investigation; A Journal of Technical Methods and Pathology, 2006,86(4):345-356.
doi: 10.1038/labinvest.3700395 pmid: 16482104
[13] Yan J, Li G, Hu Y, Qu W, Wan Y . Construction of a synthetic phage-displayed nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. J Transl Med, 2014,12:343.
doi: 10.1186/s12967-014-0343-6 pmid: 25496223
[1] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[2] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[3] 梅雅贤,王玥,罗文新. 纳米抗体在传染病的预防、诊断和治疗中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 24-34.
[4] 陈秀秀,吴成林,周丽君. 人源抗体制备及临床应用研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 90-96.
[5] 李金晶,许菲,季艳伟,舒梅,涂追,付金衡. 抗c-Myc标签纳米抗体的筛选与应用[J]. 中国生物工程杂志, 2018, 38(2): 61-67.
[6] 李丹, 黄鹤. 纳米抗体异源表达的研究进展[J]. 中国生物工程杂志, 2017, 37(8): 84-95.
[7] 李尤简, 张国奇, 郭吉星, 陈新凯, 豆晓霞, 陈创夫, 盛金良. 绵羊肌肉生长抑制素MSTN原核表达及其纳米抗体文库的构建与鉴定[J]. 中国生物工程杂志, 2014, 34(9): 87-93.
[8] 袁丽, 戴和平. 用于筛选人工结合蛋白的骨架蛋白[J]. 中国生物工程杂志, 2013, 33(1): 95-103.
[9] 涂追, 许杨, 刘夏, 何庆华, 陶勇. 驼源天然单域重链抗体库的构建与鉴定[J]. 中国生物工程杂志, 2011, 31(04): 31-36.
[10] 毛晓燕 乔玉玲 卢卫嘉 马瑞 赵红. 人源天然ScFv噬菌体抗体库的构建及鉴定[J]. 中国生物工程杂志, 2010, 30(05): 18-22.
[11] 于晓明,张维冰,张丽华,张玉奎. 利用氨甲蝶呤-琼脂糖凝胶进行噬菌体展示人肝脏cDNA文库筛选的方法研究[J]. 中国生物工程杂志, 2007, 27(10): 70-74.
[12] 黄慧贤,邱斌,吴晓萍,蔡绍晖,李校堃. 噬菌体展示技术筛选bFGF模拟短肽[J]. 中国生物工程杂志, 2006, 26(05): 7-10.
[13] 田媛, 胡宝成. 体内筛选技术在靶向治疗中的新进展[J]. 中国生物工程杂志, 2004, 24(11): 5-8.