Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (3): 99-103    DOI: 10.13523/j.cb.20150314
综述     
代谢工程改造微生物高产氨基酸的策略
万方1, 陈民良2, 张斌1, 陈进聪2, 陈雪岚1
1. 江西师范大学生命科学学院 南昌 330022;
2. 南昌大学中德联合研究院 南昌 330047
Strategy of Metabolic Engineering Microorganism for High Yield Amino Acids
WAN Fang1, CHEN Min-liang2, ZHANG Bin1, CHEN Jin-cong2, CHEN Xue-lan1
1. College of Life Science, JiangXi Normal University, Nanchang 330022, China;
2. Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
 全文: PDF(374 KB)   HTML
摘要:

氨基酸作为一类营养物质在维持机体正常的生理生化反应方面具有重要的功能,常用作食品、药品和化妆品等的添加剂.氨基酸的生产主要依靠微生物发酵,产氨基酸菌的选育却是制约大规模工业生产氨基酸的重要因素.随着微生物分子育种技术的发展和运用,利用代谢工程改造细胞本身固有的代谢网络,指导氨基酸高产菌的选育已成为当前研究的热点.以谷氨酸棒杆菌(Corynebacterium glutamicum)为例,就该菌株代谢网络的特征以及高产氨基酸的代谢工程策略和应用进行综述.

关键词: 代谢工程谷氨酸棒杆菌分子育种氨基酸    
Abstract:

Amino acids, which play the irreplaceable role in maintaining the body's normal physiology as a kind of nutrient substances, are usually used as additives in food, pharmaceuticals, and cosmetics. Production of amino acids mainly relies on microbial fermentation. However, high yield amino acid strain by selection hinders the large-scale industrial production. Application of metabolic engineering has become a hot spot of research in microbial metabolism network and genetically modification for screening high yield amino acid strain with the development of metabolic engineering strategy and technology in molecular breeding. The characteristic of C. glutamicum metabolism network and metabolic engineering strategy in molecular breeding of C. glutamicum-producing amino acids are introduced.

Key words: Metabolic engineering    C. glutamicum    Molecular breeding    Amino acid
收稿日期: 2014-11-13 出版日期: 2015-03-25
ZTFLH:  Q812  
基金资助:

国家自然科学基金资助项目(31360219,30960012)

通讯作者: 陈雪岚     E-mail: xuelanchen162@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

万方, 陈民良, 张斌, 陈进聪, 陈雪岚. 代谢工程改造微生物高产氨基酸的策略[J]. 中国生物工程杂志, 2015, 35(3): 99-103.

WAN Fang, CHEN Min-liang, ZHANG Bin, CHEN Jin-cong, CHEN Xue-lan. Strategy of Metabolic Engineering Microorganism for High Yield Amino Acids. China Biotechnology, 2015, 35(3): 99-103.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150314        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I3/99


[1] Leuchtenberger W, Huthmacher K, Drauz K, et al. Biotechnological production of amino acids and derivatives : current status and prospects.Appl Microbiol Biotechnol, 2005, 69(1): 1-8.

[2] 陈琦, 王卓, 魏冬青. 代谢网络流分析进展及应用. 科学通报, 2010,55(14): 1302-1309. Chen Q, Wang Z, Wei D Q. Progress in the applications of flux analysis of metabolic networks. Chinese Sci Bull, 2010,14(55):1302-1309.

[3] Xu J, Han M, Zhang J, et al. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway. Amino Acids, 2014, 46: 2165-2175.

[4] Schneider J, Karin N, Volker F W. Production of the amino acidsL-glutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum.Journal of Biotechnology, 2011,154: 191-198.

[5] Xu M, Rao Z, Dou W. Site-directed mutagenesis studies on the L-Arginine-binding sites of feedback inhibition in N-acetyl-L-glutamate kinase (NAGK) from Corynebacterium glutamicum.Curr Microbiol, 2012,64: 164-172.

[6] Seo Y K, Lee J, Lee S Y. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine. Biotechnology and Bioengineering,2015,112(2):416-421.

[7] Bommareddy A R, Chen Z, Rappert S, et al. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metabolic Engineering, 2014,25: 30-37.

[8] Jiang L Y, Zhang Y Y, Li Z, et al. Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability. Journal of Industrial Microbiology and Biotechnology, 2013,10(40): 1143-1151.

[9] Park S H, Kim H U, Kim T Y, et al. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nature Communications,2014, doi:10.1038/ncomms5618.

[10] Yin L, Shi F, Hu X, et al.Increasing L-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE. Journal of Applied Microbiology, 2012,5(114): 1369-1377.

[11] 刘立明, 陈坚. 基因组规模代谢网络模型构建及其应用. 生物工程学报, 2010, 26(9): 1176-1186. Liu L M, Chen J. Reconstruction and application of genome-scale metabolic network model. Chin J Biotech, 2010, 26(9): 1176-1186.

[12] Kjeldsen K R, Nielsen J. In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnology and Bioengineering, 2009,102(2): 583-697.

[13] Shinfuku Y, Sorpitiporn N,Sono M, et al. Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microbial Cell Factories, 2009,43(8): 1-15.

[14] 焦炳华. 现代生命科学概论. 2009, 北京: 科学出版社. Jiao B H. Introduction to Modern Life Science. Beijing: Science Press,2009.

[15] Hashimoto K, Nakamura K, Kuroda T, et al. The protein encoded by NCgl1221 in Corynebacterium glutamicum functions as a mechanosensitive channel. Bioscience, Biotechnology, and Biochemistry, 2010,74(12): 2546-2549.

[16] Yen M R, Tseng Y H, Simic P, et al. The ubiquitous ThrE family of putative transmembrane amino acid efflux transporters. Research in Microbiology, 2002,153(1): 19-25.

[17] Seryoung K, Yoneyama H. Amino acid exporter: a tool for the next-generation microbial fermentation. J Biotechnol Biomater, 2013, 3: 118-122.

[18] Zhou Z H, Wang C, Chen G J, et al. Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum. Applied Cellular Physiology and Metabolic Engineering,2015, 31(1):12-19.

[19] Zahoor A, Ottenb A, Wendisch V F, et al. Metabolic engineering of Corynebacterium glutamicum for glycolate production. J.Biotechnol,2014, doi:10.1016/ j.jbiotec.

[20] Xu M J, Rao Z M, Yang J, et al. Heterologous and homologous expression of the arginine biosynthetic argC~H cluster from Corynebacterium crenatum for improvement of L-arginine production. Journal of Industrial Microbiology & Biotechnology, 2012, 39(3): 495-502.

[21] Cremer J, Eggeling L, Sahm H. Control of the lysine biosynthesis sequence in Corynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes. Applied and Environmental Microbiology, 1991, 57(6): 1746-1752.

[22] Becker J, Zelder, Häfner, et al. From zero to hero-Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production.Metabolic Engineering, 2011, 13(2): 159-168.

[23] Huang H, Zhou P, Xie J. Molecular mechanisms underlying the function diversity of transcriptional factor IclR family. Cellular Signalling, 2012, 24(6): 1270-1275.

[24] Michael Bott. Offering surprises:TCA cycle regulation in Corynebacterium glutamicum. Trends in Microbiology, 2007, 15(9): 417-422.

[25] Brune I, Jochmann N, Brinkrolf K, et al.TheIclR-type transcriptional repressor LtbRregulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum.Journal of Bacteriology , 2007, 189(7): 2720–2733.

[26] Axel N, Armin K, Christian S, et al.Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. The Journal of Biological Chemistry, 2006, 281(18):12300-12307.

[27] Christian S, Axel N, Lena G, et al. Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol, 2007,76(3): 691-700.

[28] Lu D M, Liu J Z , Mao Z W, et al. Engineering of Corynebacterium glutamicum to enhance L-ornithine production by gene knockout and comparative proteomic analysis. Biotechnology and Bioengineering, 2012, 20(4): 731-739.

[29] Yao W, Deng X, Zhong H, et al. Double deletion of dtsR1 and pyc induce efficient L-glutamate overproduction in Corynebacterium glutamicum. J Ind Microbiol Biotechnol, 2009, 36(7): 911-921.

[30] Simic P, Willuhn J, Sahm H, et al. Identification of glyA(encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase L-Threonine accumulation by Corynebacterium glutamicum. Applied and Environmental Microbiology, 2002, 68(7): 3321-3327.

[31] Xu M J, Rao Z M, Yang J, et al. The effect of a LYSE exporter overexpression on L-Arginine production in Corynebacterium crenatum. Curr Microbiol, 2013, 67(3): 271-278.

[32] Shi F, Li K, Huan X, et al. Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicumssp.lactofermentum. Appl Biochem Biotechnol, 2013, 171(2): 504-521.

[33] 李桂莹, 张新波, 王智文, 等. 逆向代谢工程的最新研究进展. 生物工程学报, 2014, 30(8): 1151-1163. Li G Y, Zhang X B, Wang Z W, et al. Progress in inverse metabolic engineering. Chin J Biotech, 2014, 30(8): 1151-1163.

[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 黄焕邦,吴洋,杨友辉,王兆官,齐浩. 基于古菌酪氨酰tRNA合成酶非天然氨基酸插入的研究进展[J]. 中国生物工程杂志, 2021, 41(9): 110-125.
[3] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[4] 廖丹妮,张昭旸,靳瑾,李霞,贾斌. 微生物tRNA与密码子系统应用研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 64-73.
[5] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[6] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[7] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[8] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[9] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[10] 薛二淑,吴昊,宋倩倩,田开仁,乔建军,财音青格乐. 细菌中D-氨基酸生物合成及调控作用研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 106-113.
[11] 王越,李江华,堵国成,刘龙. L-氨基酸脱氨酶的分子改造及其用于全细胞催化法生产α-酮戊二酸条件的优化 *[J]. 中国生物工程杂志, 2019, 39(3): 56-64.
[12] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[13] 于思礼,刘雪,张昭宇,於洪建,赵广荣. 甜菜素的生物合成及其代谢调控进展 *[J]. 中国生物工程杂志, 2018, 38(8): 84-91.
[14] 程丽娜,陆海燕,曲淑玲,张轶群,丁娟娟,邹少兰. 微生物发酵法生产环磷酸腺苷研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 102-108.
[15] 刘翠翠, 胡梦蝶, 王志, 代俊, 姚娟, 李沛, 李志军, 陈雄, 李欣. 鲁氏酵母胞内海藻糖积累过程的代谢特征分析[J]. 中国生物工程杂志, 2017, 37(9): 41-47.