Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (7): 101-113    DOI: 10.13523/j.cb.2301008
    
Research Progress of Electrochemical Biosensor in the Detection of Tumor Markers in Breast Cancer
Jia-ye JIANG1,Ya-fang WU1,Zhi-qiang HUANG1,Ying-lin WANG1,Ying YU1,Zhi-tao GU2,Qing LIU1,**()
1 School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
Download: HTML   PDF(2180KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Early screening and diagnosis of cancer is an effective means to reduce its incidence rate and mortality. Breast cancer is the most common malignant tumor among women, and has surpassed lung cancer to become the tumor with the highest incidence rate among women. With the innovation of electrochemical technology and the advantages of biosensors such as high sensitivity, rapid detection, simple operation and low cost, electrochemical biosensors are widely used in the detection of breast cancer markers. This review first summarizes the classification of common breast cancer biomarkers, and then summarizes and discusses the application of electrochemical biosensors in tumor markers of breast cancer at home and abroad, with electrochemical related immunosensors and aptamer sensors as the classification, and discusses their development prospects.



Key wordsBreast cancer      Early detection      Tumor marker      Electrochemical sensor     
Received: 09 January 2023      Published: 03 August 2023
ZTFLH:  Q811  
Cite this article:

Jia-ye JIANG, Ya-fang WU, Zhi-qiang HUANG, Ying-lin WANG, Ying YU, Zhi-tao GU, Qing LIU. Research Progress of Electrochemical Biosensor in the Detection of Tumor Markers in Breast Cancer. China Biotechnology, 2023, 43(7): 101-113.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2301008     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I7/101

乳腺癌分型 相关靶标
HR(PR/ER)/HER2 其他相关检测靶标 代表性乳腺癌细胞系[33] 乳腺癌占比[34]
Luminal A HR+,HER2- Ki-67(低表达)[35] MCF-7 约50%
Luminal B HR+,HER2+ EGFR+[36]、Ki-67(高表达)[35] BT-474 约20%
基底样(三阴性乳腺癌) HR-,HER2- CK5/6+和/或HER1+[37] MDA-MB-231 约15%~20%
HER2过表达 HR-,HER2++ CA125、CA15-3[38] SK-BR-3 约10%~15%
Table 1 The classification of breast cancer subtypes and related markers
检测靶标 识别元件 传感技术 工作电极 动态范围 检测限 信号放大器 参考文献
HER2 抗体 DPV
CA
MnO2
纳米片
50 fg/mL~100 ng/mL,
100 fg/mL~100 ng/mL
16.7 fg/mL,
33.3 fg/mL
Au@Ag纳米棒 [73]
HER2-ECD 抗体 DPASV SPCE 10~150 ng/mL 2.1 ng/mL CdSe@ZnS量子点 [47]
HER2 抗体、肽段 AuE 1~200 pg/mL 90 fg/mL DNA链复制 [49]
HER2 适配体 PEC WS2 NW/
TM
0.5~10 ng/mL 0.36 ng/mL 葡萄糖氧化酶酶促、金纳米
颗粒局部表面等离子体共振
[74]
HER2-ECD
CA15-3
抗体 SLV SPCE 0~50 ng/mL,
0~70 U/mL
2.9 ng/mL
5.0 U/mL
碱性磷酸酶酶促 [48]
CA15-3 抗体 ECL GCE 0.000 5~500 U/mL 0.000 2 U/mL Pt@BSA核/壳纳米球 [75]
MUC-1 抗体 CV PGE 0.05~940 U/mL 0.01 U/mL DA/MUC-1/fMWCNTs [76]
MUC-1 适配体 DPV
CA
Au/GCE 1 fg/mL~10 pg/mL 0.72 fg/mL
0.82 fg/mL
AuNPs@Cu7S4@Cu/
Mn-AzoPPOP)
[77]
MUC-1 适配体 ECL GCE 1 pg/mL~10 ng/mL 0.23 pg/mL Zn-TP@Zn-Bp-MOFs [78]
MCF-7
(EpCAM)
适配体、
抗体
ECL GCE 1.1×102~1.1×107 U/μL 37 U/μL Ru(dcbpy ) 3 2 +@BPQDs [79]
SK-BR-3
(HER2)
抗体 ECL GCE 20~2 000 cell/mL 20 cell/mL 鲁米诺/壳聚糖 [52]
MDA-MB-231 适配体 PEC CPE 300~5 000 cell/mL 180 cell/mL CNTs/SnSe [80]
MDA-MB-231 抗体 PEC ITO 1×102~1×106 cell/mL 30 cell/mL BiOBr/FeTPPCl/BiOI [81]
miRNA-21 核酸 DPV AU 1 fmol/L~1 nmol/L 0.29 fmol/L MOF@Pt@MOF纳米酶 [82]
Table 2 Selected examples of electrochemical sensors for detecting breast cancer tumor markers with performance
Fig.1 Electrochemical sensor for detecting HER2 (a) Electrochemical sensor for simultaneous detection of HER2-ECD and CA15-3[48] (b) Amplification of HER2 detection signal using RCA technology[49]
Fig.2 Electrochemical aptasensor for detecting mucin1[61]
Fig.3 Electrochemical aptasensor for detecting exosomes in breast cancer cells[70]
Fig.4 Nucleic acid electrochemical biosensor for detecting miRNA-122 [72]
[1]   Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview. International Journal of Cancer, 2021, 149(4): 778-789.
doi: 10.1002/ijc.v149.4
[2]   Han C P, Zhang A W, Kong Y, et al. Mu. pngunctional iron oxide-carbon hybrid nanoparticles for targeted fluorescent/MR dual-modal imaging and detection of breast cancer cells. Analytica Chimica Acta, 2019, 1067: 115-128.
doi: 10.1016/j.aca.2019.03.054
[3]   Dervisevic M, Alba M, Adams T E, et al. Electrochemical immunosensor for breast cancer biomarker detection using high-density silicon microneedle array. Biosensors and Bioelectronics, 2021, 192: 113496.
doi: 10.1016/j.bios.2021.113496
[4]   Shahbazi N, Zare-Dorabei R, Naghib S M. Mu. pngunctional nanoparticles as optical biosensing probe for breast cancer detection: a review. Materials Science & Engineering C, Materials for Biological Applications, 2021, 127: 112249.
[5]   Chen L M, Zhang C C, Xiao J N, et al. Local extraction and detection of early stage breast cancers through a microneedle and nano-Ag/MBL film based painless and blood-free strategy. Materials Science and Engineering: C, 2020, 109: 110402.
doi: 10.1016/j.msec.2019.110402
[6]   Zhou X M, Li C, Rahaman M M, et al. A comprehensive review for breast histopathology image analysis using classical and deep neural networks. IEEE Access, 2020, 8: 90931-90956.
doi: 10.1109/Access.6287639
[7]   程朝晖, 徐伟明, 陈玉珠. 血CTCs和cfDNA联合检测与传统肿瘤标志物检测在辅助诊断乳腺癌中的应用价值比较. 临床和实验医学杂志, 2020, 19(9): 994-997.
[7]   Cheng Z H, Xu W M, Chen Y Z. Comparison between combined detection of plasma CTCs with cfDNA and traditional tumor marker detection in adjuvant diagnosis of breast cancer. Journal of Clinical and Experimental Medicine, 2020, 19(9): 994-997.
[8]   Hassan E M, Mohamed A, DeRosa M C, et al. High-sensitivity detection of metastatic breast cancer cells via terahertz chemical microscopy using aptamers. Sensors and Actuators B: Chemical, 2019, 287: 595-601.
doi: 10.1016/j.snb.2019.02.019
[9]   Henry N L, Braun T M, Breslin T M, et al. Variation in the use of advanced imaging at the time of breast cancer diagnosis in a statewide registry. Cancer, 2017, 123(15): 2975-2983.
doi: 10.1002/cncr.30674 pmid: 28301680
[10]   卢振东, 孙晓晓, 谢龙祥, 等. 乳腺癌分子分型研究进展. 河南大学学报(医学版), 2018, 37(4): 229-233.
[10]   Lu Z D, Sun X X, Xie L X, et al. The development of molecular subtyping in breast cancer. Journal of Henan University (Medical Science), 2018, 37(4): 229-233.
[11]   吴水水, 徐雪芬, 黄剑. ER-α36在乳腺癌中激活非基因组信号通路及诱导耐药. 临床与实验病理学杂志, 2017, 33(12): 1368-1370.
[11]   Wu S S, Xu X F, Huang J. ER-α36 activates non-genomic signaling pathway and induces drug resistance in breast cancer. Chinese Journal of Clinical and Experimental Pathology, 2017, 33(12): 1368-1370.
[12]   Anderson W F, Chatterjee N, Ershler W B, et al. Estrogen receptor breast cancer phenotypes in the surveillance, epidemiology, and end results database. Breast Cancer Research and Treatment, 2002, 76(1): 27-36.
[13]   Oh D S, Troester M A, Usary J, et al. Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. Journal of Clinical Oncology, 2006, 24(11): 1656-1664.
pmid: 16505416
[14]   Badve S, Nakshatri H. Oestrogen-receptor-positive breast cancer: towards bridging histopathological and molecular classifications. Journal of Clinical Pathology, 2009, 62(1): 6-12.
doi: 10.1136/jcp.2008.059899 pmid: 18794199
[15]   张颖, 阮祥燕, 蔡桂举, 等. 不同激素受体作为乳腺癌预后标志物的研究进展. 首都医科大学学报, 2018, 39(4): 479-485.
doi: 10.3969/j.issn.1006-7795.2018.04.001
[15]   Zhang Y, Ruan X Y, Cai G J, et al. Different hormone receptors and their roles as prognostic markers in breast cancer. Journal of Capital Medical University, 2018, 39(4): 479-485.
doi: 10.3969/j.issn.1006-7795.2018.04.001
[16]   杨睿智, 郑洪. 孕激素受体磷酸化调控的研究进展. 贵州医药, 2017, 41(2): 210-211.
[16]   Yang R Z, Zheng H. Research progress on phosphorylation regulation of progesterone receptor. Guizhou Medical Journal, 2017, 41(2): 210-211.
[17]   Dai X F, Xiang L J, Li T, et al. Cancer hallmarks, biomarkers and breast cancer molecular subtypes. Journal of Cancer, 2016, 7(10): 1281-1294.
doi: 10.7150/jca.13141 pmid: 27390604
[18]   李以姗, 谢丽. 人表皮生长因子受体2低表达乳腺癌患者的临床特征及治疗进展. 癌症进展, 2022, 20(13): 1310-1315.
[18]   Li Y S, Xie L. Clinical characteristics and treatment progress of breast cancer patients with low expression of human epidermal growth factor receptor 2. Oncology Progress, 2022, 20(13): 1310-1315.
[19]   黄元夕, 张世园. 乳腺癌精准治疗时代下HER-2阳性乳腺癌个体化治疗. 医学研究杂志, 2022, 51(8): 5-10.
[19]   Huang Y X, Zhang S Y. Individualized treatment of HER-2 positive breast cancer in the era of precise treatment of breast cancer. Journal of Medical Research, 2022, 51(8): 5-10.
[20]   Mohammadi S, Salimi A, Hamd-Ghadareh S, et al. A FRET immunosensor for sensitive detection of CA 15-3 tumor marker in human serum sample and breast cancer cells using antibody functionalized luminescent carbon-dots and AuNPs-dendrimer aptamer as donor-acceptor pair. Analytical Biochemistry, 2018, 557: 18-26.
doi: S0003-2697(18)30426-3 pmid: 29908158
[21]   王峰, 刘杰, 曲根宝, 等. 多种血清肿瘤标志物联合检测在乳腺癌诊断中的意义. 标记免疫分析与临床, 2021, 28(5): 753-755, 804.
[21]   Wang F, Liu J, Qu G B, et al. Significances of combined detection of multiple serum tumor markers in the diagnosis of breast cancer. Labeled Immunoassays and Clinical Medicine, 2021, 28(5): 753-755, 804.
[22]   Zhu H Y, Dale P S, Caldwell C W, et al. Rapid and label-free detection of breast cancer biomarker CA15- 3 in clinical human serum samples with optofluidic ring resonator sensors. Analytical Chemistry, 2009, 81(24): 9858-9865.
doi: 10.1021/ac902437g
[23]   Hong C L, Yuan R, Chai Y Q, et al. Ferrocenyl-doped silica nanoparticles as an immobilized affinity support for electrochemical immunoassay of cancer antigen 15-3. Analytica Chimica Acta, 2009, 633(2): 244-249.
[24]   Hassan E M, Willmore W G, DeRosa M C. Aptamers: promising tools for the detection of circulating tumor cells. Nucleic Acid Therapeutics, 2016, 26(6): 335-347.
pmid: 27736306
[25]   Alix-Panabières C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clinical Chemistry, 2013, 59(1): 110-118.
doi: 10.1373/clinchem.2012.194258 pmid: 23014601
[26]   Paterlini-Brechot P, Benali N L. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Letters, 2007, 253(2): 180-204.
doi: 10.1016/j.canlet.2006.12.014 pmid: 17314005
[27]   陈宏宇, 张钧, 祁鸣. BRCA相关乳腺癌概述及在中国人群中的研究进展. 生命科学, 2020, 32(4): 366-372.
[27]   Chen H Y, Zhang J, Qi M. Overview of BRCA-related breast cancer and its research progress in Chinese population. Chinese Bulletin of Life Sciences, 2020, 32(4): 366-372.
[28]   陈茜, 张频. 胚系BRCA基因突变乳腺癌的临床诊治进展. 中国肿瘤临床, 2022, 49(2): 91-94.
[28]   Chen Q, Zhang P. Progress in clinical treatment of germline BRCA-mutated breast cancer. Chinese Journal of Clinical Oncology, 2022, 49(2): 91-94.
[29]   陈启庭, 韦雄, 蔡俊媛, 等. PARP抑制剂在乳腺癌中的治疗进展及耐药机制. 实用肿瘤杂志, 2022, 37(4): 376-381.
[29]   Chen Q T, Wei X, Cai J Y, et al. Therapeutic progress and drug resistance mechanism of PARP inhibitors in breast cancer. Journal of Practical Oncology, 2022, 37(4): 376-381.
[30]   Ismail A, El-Mahdy H A, Abulsoud A I, et al. Beneficial and detrimental aspects of miRNAs as chief players in breast cancer: a comprehensive review. International Journal of Biological Macromolecules, 2023, 224: 1541-1565.
doi: 10.1016/j.ijbiomac.2022.10.241 pmid: 36328268
[31]   Erturk E, Enes Onur O, Akgun O, et al. Mitochondrial miRNAs (MitomiRs): their potential roles in breast and other cancers. Mitochondrion, 2022, 66: 74-81.
doi: 10.1016/j.mito.2022.08.002 pmid: 35963496
[32]   沈嘉悦, 唐小其, 周涛声, 等. 液体活检在乳腺癌诊疗中的研究进展. 中国临床新医学, 2022, 15(12): 1197-1201.
[32]   Shen J Y, Tang X Q, Zhou T S, et al. Research progress of liquid biopsy in diagnosis and treatment of breast cancer. Chinese Journal of New Clinical Medicine, 2022, 15(12): 1197-1201.
[33]   Subik K, Lee J F, Baxter L, et al. The expression patterns of ER, PR, HER2, CK5/6, EGFR, ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer: Basic and Clinical Research, 2010, 4: 35-41.
pmid: 20697531
[34]   Jing L, Xie C Y, Li Q Q, et al. Electrochemical biosensors for the analysis of breast cancer biomarkers: from design to application. Analytical Chemistry, 2022, 94(1): 269-296.
doi: 10.1021/acs.analchem.1c04475
[35]   Hugh J, Hanson J, Cheang M C U, et al. Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. Journal of Clinical Oncology, 2009, 27(8): 1168-1176.
doi: 10.1200/JCO.2008.18.1024 pmid: 19204205
[36]   Rakha E A, Reis-Filho J S, Ellis I O. Combinatorial biomarker expression in breast cancer. Breast Cancer Research and Treatment, 2010, 120(2): 293-308.
doi: 10.1007/s10549-010-0746-x pmid: 20107892
[37]   Carey L A, Perou C M, Livasy C A, et al. Race, breast cancer subtypes, and survival in the Carolina breast cancer study. JAMA, 2006, 295(21): 2492-2502.
doi: 10.1001/jama.295.21.2492 pmid: 16757721
[38]   赵利, 林志伟, 龙飞, 等. 肿瘤标志物(CEA、CA153、CA125)对早期乳腺癌的诊断价值及其与分子亚型的关系. 齐齐哈尔医学院学报, 2018, 39(6): 635-637.
[38]   Zhao L, Lin Z W, Long F, et al. Diagnostic value of tumor markers (CEA, CA153, CA125) in early breast cancer and their relationship with molecular subtypes. Journal of Qiqihar University of Medicine, 2018, 39(6): 635-637.
[39]   Mostafa I M, Tian Y, Anjum S, et al. Comprehensive review on the electrochemical biosensors of different breast cancer biomarkers. Sensors and Actuators B: Chemical, 2022, 365: 131944.
doi: 10.1016/j.snb.2022.131944
[40]   Ranjan P, Parihar A, Jain S, et al. Biosensor-based diagnostic approaches for various cellular biomarkers of breast cancer: a comprehensive review. Analytical Biochemistry, 2020, 610: 113996.
doi: 10.1016/j.ab.2020.113996
[41]   Feng Y G, Zhu J H, Wang X Y, et al. New advances in accurate monitoring of breast cancer biomarkers by electrochemistry, electrochemiluminescence, and photoelectrochemistry. Journal of Electroanalytical Chemistry, 2021, 882: 115010.
doi: 10.1016/j.jelechem.2021.115010
[42]   Hasan M R, Ahommed M S, Daizy M, et al. Recent development in electrochemical biosensors for cancer biomarkers detection. Biosensors and Bioelectronics: X, 2021, 8: 100075.
doi: 10.1016/j.biosx.2021.100075
[43]   Tabish T A, Hayat H, Abbas A, et al. Graphene quantum dot-based electrochemical biosensing for early cancer detection. Current Opinion in Electrochemistry, 2021, 30: 100786.
doi: 10.1016/j.coelec.2021.100786
[44]   Yang G J, Xiao Z Q, Tang C L, et al. Recent advances in biosensor for detection of lung cancer biomarkers. Biosensors and Bioelectronics, 2019, 141: 111416.
doi: 10.1016/j.bios.2019.111416
[45]   Moura S L, Martín C G, Martí M, et al. Electrochemical immunosensing of nanovesicles as biomarkers for breast cancer. Biosensors and Bioelectronics, 2020, 150: 111882.
doi: 10.1016/j.bios.2019.111882
[46]   Lima Moura S, Martì M, Pividori M I. Matrix effect in the isolation of breast cancer-derived nanovesicles by immunomagnetic separation and electrochemical immunosensing: a comparative study. Sensors, 2020, 20(4): 965.
doi: 10.3390/s20040965
[47]   Freitas M, Neves M M P S, Nouws H P A, et al. Quantum dots as nanolabels for breast cancer biomarker HER2-ECD analysis in human serum. Talanta, 2020, 208: 120430.
doi: 10.1016/j.talanta.2019.120430
[48]   Marques R C B, Costa-Rama E, Viswanathan S, et al. Voltammetric immunosensor for the simultaneous analysis of the breast cancer biomarkers CA 15-3 and HER2-ECD. Sensors and Actuators B: Chemical, 2018, 255: 918-925.
doi: 10.1016/j.snb.2017.08.107
[49]   Shen C C, Liu S P, Li X Q, et al. Immunoelectrochemical detection of the human epidermal growth factor receptor 2 (HER2) via gold nanoparticle-based rolling circle amplification. Microchimica Acta, 2018, 185(12): 547.
doi: 10.1007/s00604-018-3086-x
[50]   Li Y Y, Xu C X, Li H, et al. Nonenzymatic immunosensor for detection of carbohydrate antigen 15-3 based on hierarchical nanoporous PtFe alloy. Biosensors and Bioelectronics, 2014, 56: 295-299.
doi: 10.1016/j.bios.2014.01.020
[51]   Liu Y, Weng X X, Wang K K, et al. A novel enzyme-free sandwich-like electrochemical immunosensor for the detection of carbohydrate antigen 15-3 based on hierarchical AuPd nanochain networks. Sensors and Actuators B: Chemical, 2017, 247: 349-356.
doi: 10.1016/j.snb.2017.03.024
[52]   Nasrollahpour H, Mahdipour M, Isildak I, et al. A highly sensitive electrochemiluminescence cytosensor for detection of SKBR-3 cells as metastatic breast cancer cell line: a constructive phase in early and precise diagnosis. Biosensors and Bioelectronics, 2021, 178: 113023.
doi: 10.1016/j.bios.2021.113023
[53]   Wei X, Zhu M J, Yan H, et al. Recent advances in aggregation-induced electrochemiluminescence. Chemistry, 2019, 25(55): 12671-12683.
[54]   Jie G T, Zhou Q, Jie G F. Graphene quantum dots-based electrochemiluminescence detection of DNA using multiple cycling amplification strategy. Talanta, 2019, 194: 658-663.
doi: S0039-9140(18)31146-9 pmid: 30609587
[55]   Liu F, Ge S G, Su M, et al. Electrochemiluminescence device for in situ and accurate determination of CA153 at the MCF-7 cell surface based on graphene quantum dots loaded surface villous Au nanocage. Biosensors and Bioelectronics, 2015, 71: 286-293.
doi: 10.1016/j.bios.2015.04.051
[56]   Khoshroo A, Mazloum-Ardakani M, Forat-Yazdi M. Enhanced performance of label-free electrochemical immunosensor for carbohydrate antigen 15-3 based on catalytic activity of cobalt sulfide/graphene nanocomposite. Sensors and Actuators B: Chemical, 2018, 255: 580-587.
doi: 10.1016/j.snb.2017.08.114
[57]   Wu L L, Wang Y D, Xu X, et al. Aptamer-based detection of circulating targets for precision medicine. Chemical Reviews, 2021, 121(19): 12035-12105.
doi: 10.1021/acs.chemrev.0c01140 pmid: 33667075
[58]   Lou B B, Liu Y F, Shi M L, et al. Aptamer-based biosensors for virus protein detection. Trends in Analytical Chemistry: TRAC, 2022, 157: 116738.
doi: 10.1016/j.trac.2022.116738
[59]   Zhang Y, Lai B S, Juhas M. Recent advances in aptamer discovery and applications. Molecules, 2019, 24(5): 941.
doi: 10.3390/molecules24050941
[60]   Xu Y, Zhang Y, Li N, et al. An ultra-sensitive dual-signal ratiometric electrochemical aptasensor based on functionalized MOFs for detection of HER2. Bioelectrochemistry, 2022, 148: 108272.
doi: 10.1016/j.bioelechem.2022.108272
[61]   Zhang G J, Liu Z G, Fan L F, et al. A novel dual signal and label-free electrochemical aptasensor for mucin 1 based on hemin/graphene@PdPtNPs. Biosensors & Bioelectronics, 2020, 173: 112785.
doi: 10.1016/j.bios.2020.112785
[62]   Zhu Y, Chandra P, Shim Y B. Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine-Au nanoparticle-aptamer bioconjugate. Analytical Chemistry, 2013, 85(2): 1058-1064.
doi: 10.1021/ac302923k pmid: 23215018
[63]   Salahandish R, Ghaffarinejad A, Naghib S M, et al. Nano-biosensor for highly sensitive detection of HER2 positive breast cancer. Biosensors and Bioelectronics, 2018, 117: 104-111.
doi: 10.1016/j.bios.2018.05.043
[64]   Zhang H X, Wang Z H, Zhang Q X, et al. Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosensors and Bioelectronics, 2019, 124-125: 184-190.
[65]   Vajhadin F, Mazloum-Ardakani M, Shahidi M, et al. MXene-based cytosensor for the detection of HER2-positive cancer cells using CoFe2O4@Ag magnetic nanohybrids conjugated to the HB5 aptamer. Biosensors & Bioelectronics, 2022, 195: 113626.
doi: 10.1016/j.bios.2021.113626
[66]   Yazdanparast S, Benvidi A, Banaei M, et al. Dual-aptamer based electrochemical sandwich biosensor for MCF-7 human breast cancer cells using silver nanoparticle labels and a poly(glutamic acid)/MWNT nanocomposite. Microchimica Acta, 2018, 185(9): 405.
doi: 10.1007/s00604-018-2918-z
[67]   Luo J J, Liang D, Li X Q, et al. Aptamer-based photoelectrochemical assay for the determination of MCF-7. Microchimica Acta, 2020, 187(5): 257.
doi: 10.1007/s00604-020-04239-1
[68]   Wang K, He M Q, Zhai F H, et al. A novel electrochemical biosensor based on polyadenine modified aptamer for label-free and ultrasensitive detection of human breast cancer cells. Talanta, 2017, 166: 87-92.
doi: S0039-9140(17)30152-2 pmid: 28213264
[69]   Shafiei F, Saberi R S, Mehrgardi M A. A label-free electrochemical aptasensor for breast cancer cell detection based on a reduced graphene oxide-chitosan-gold nanoparticle composite. Bioelectrochemistry, 2021, 140: 107807.
doi: 10.1016/j.bioelechem.2021.107807
[70]   An Y, Li R, Zhang F, et al. Magneto-mediated electrochemical sensor for simultaneous analysis of breast cancer exosomal proteins. Analytical Chemistry, 2020, 92(7): 5404-5410.
doi: 10.1021/acs.analchem.0c00106 pmid: 32157871
[71]   Hou Z Y, Zheng J, Zhang C F, et al. Direct ultrasensitive electrochemical detection of breast cancer biomarker-miRNA-21 employing an aptasensor based on a microgel nanoparticle composite. Sensors and Actuators B: Chemical, 2022, 367: 132067.
doi: 10.1016/j.snb.2022.132067
[72]   Guo Q Q, Yu Y Q, Zhang H, et al. Electrochemical sensing of exosomal microRNA based on hybridization chain reaction signal amplification with reduced false-positive signals. Analytical Chemistry, 2020, 92(7): 5302-5310.
doi: 10.1021/acs.analchem.9b05849 pmid: 32148013
[73]   Ma Q. Dual-mode electrochemical immunosensor based on Au@Ag NRs as double signal indicator for sensitive detection of HER2. Journal of the Electrochemical Society, 2021, 168(2): 027515.
doi: 10.1149/1945-7111/abe56d
[74]   Guo X X, Liu S P, Yang M H, et al. Dual signal amplification photoelectrochemical biosensor for highly sensitive human epidermal growth factor receptor-2 detection. Biosensors and Bioelectronics, 2019, 139: 111312.
doi: 10.1016/j.bios.2019.05.017
[75]   Ke H, Zhang X, Huang C S, et al. Electrochemiluminescence evaluation for carbohydrate antigen 15-3 based on the dual-amplification of ferrocene derivative and Pt/BSA core/shell nanospheres. Biosensors and Bioelectronics, 2018, 103: 62-68.
doi: 10.1016/j.bios.2017.12.032
[76]   Rashid S, Nawaz M H, Rehman I U, et al. Dopamine/mucin-1 functionalized electro-active carbon nanotubes as a probe for direct competitive electrochemical immunosensing of breast cancer biomarker. Sensors and Actuators B: Chemical, 2021, 330: 129351.
doi: 10.1016/j.snb.2020.129351
[77]   Zhao H J, Liu T T, Cui L, et al. Label-free and dual-amplified electrochemical bioanalysis of MUC 1 based on an inorganic-organic polymer hybrid mimic peroxidase (AuNPs@Cu7S4@Cu/Mn-AzoPPOP) and catalytic hairpin assembly. Sensors and Actuators B: Chemical, 2021, 345: 130332.
doi: 10.1016/j.snb.2021.130332
[78]   Huang L Y, Hu X, Shan H Y, et al. High-performance electrochemiluminescence emitter of metal organic framework linked with porphyrin and its application for ultrasensitive detection of biomarker mucin-1. Sensors and Actuators B: Chemical, 2021, 344: 130300.
doi: 10.1016/j.snb.2021.130300
[79]   Fang D D, Zhao D D, Zhang S P, et al. Black phosphorus quantum dots functionalized MXenes as the enhanced dual-mode probe for exosomes sensing. Sensors and Actuators B: Chemical, 2020, 305: 127544.
doi: 10.1016/j.snb.2019.127544
[80]   Meng Y C, Wang S S, Zhao J K, et al. Photoelectrochemical aptasensor with low background noise. Microchimica Acta, 2020, 187(11): 1-10.
doi: 10.1007/s00604-019-3921-8
[81]   Liu X, Fan D W, Zhang C C, et al. Polyacrylic acid/polyethylene glycol hybrid a.pngouling interface for photoelectrochemical immunosensing of MDA-MB-231 cells using BiOBr/FeTPPCl/BiOI co-sensitized composite as matrix. Sensors and Actuators B: Chemical, 2021, 328: 129081.
doi: 10.1016/j.snb.2020.129081
[82]   Li X Y, Li X M, Li D D, et al. Electrochemical biosensor for ultrasensitive exosomal miRNA analysis by cascade primer exchange reaction and MOF@Pt@MOF nanozyme. Biosensors and Bioelectronics, 2020, 168: 112554.
doi: 10.1016/j.bios.2020.112554
[1] DENG Si-yu, LIANG Bing, WEI Wei, WANG Meng-na, CAO You-de. Effects of miR-34a-5p on Triple Negative Breast Cancer Cells and Related Mechanisms[J]. China Biotechnology, 2023, 43(1): 18-26.
[2] Zhi-xin YAO,Wan-ming LI. Advances in Aptamers in the Diagnosis and Treatment of Triple-negative Breast Cancer[J]. China Biotechnology, 2022, 42(7): 62-68.
[3] HU Kai,HU Jing,SUN Zi-jiu,LIU Shi-yan,LIAO De-yu,YU Huo-mei,ZHANG Yan. Effects of UPF1 on the Proliferation, Migration and Invasion of Breast Cancer Strains MDA-MB-231 and MCF-7[J]. China Biotechnology, 2022, 42(1/2): 58-71.
[4] LU Yu-xiang,LI Yuan,FANG Dan-dan,WANG Xue-bo,YANG Wan-peng,CHU Yuan-kui,YANG Hua. The Role and Expression Regulation of MiR-5047 in the Proliferation and Migration of Breast Cancer Cells[J]. China Biotechnology, 2021, 41(4): 9-17.
[5] Jie XIAN,Xue QIN,You-de CAO. Numb Inhibits the Ubiquitination Degradation of p53 by HDM2 in Triple-negative Breast Cancer[J]. China Biotechnology, 2019, 39(7): 1-7.
[6] Qun WAN,Meng-yao LIU,Jing XIA,Li-yao GOU,Min TANG,Shi-lei SUN,Yan ZHANG. The Effects of LncRNA SNHG3 on the Proliferation, Migration and Invasion of Human Breast Cancer MCF-7 Cells[J]. China Biotechnology, 2019, 39(1): 13-20.
[7] SONG Li-jie, WANG Li, YANG Chuan-hong, LAI Huang-wen, WANG Jie. Effect of Cas9 Protein on Biological and Ultrastructural Characteristics of the Human Bone-seeking Breast Cancer Cell Line[J]. China Biotechnology, 2016, 36(7): 1-6.
[8] LI Yu-qiang, ZHU Zhi-tu, WANG Wei, LI Chen, XU Na, WANG Yu, LI Nan, SUN Hong-zhi. Effect of Silencing Nup88 Gene by RNA Interference on Growth and Invasion in Human Breast Cancer MCF-7 Cell[J]. China Biotechnology, 2014, 34(9): 31-39.
[9] LI Fei-fei, FANG Jing, MA Qiong, FU Hui, MAO Jian-ping. Natural Borneol Liquid Induced Cancer Cells Apoptosis[J]. China Biotechnology, 2013, 33(5): 22-27.
[10] GUO Chun-fang, ZHANG Yang-de, WANG Ji-wei, PAN Yi-feng, LIAO Ming-mei, WANG Ning. Characterization and the Anti-tumor Effect of Doxorubicin Flexible Liposome in vitro[J]. China Biotechnology, 2013, 33(3): 9-14.
[11] WU Chen, TIAN Huan-na, WANG Yuan-yuan, LIU Fang-ming, ZHANG Xiao-kang, LI Qin-jian, XIE Yuan-yuan. Effect of GALNT14 on the Migration of Human Breast Cancer Cells MCF-7[J]. China Biotechnology, 2012, 32(07): 8-15.
[12] SUN Xiao-xiao, WANG Ke, FENG Hong-lei, LIU Yue-hong, WAN Shao-heng, LUO Jin-yong, ZHANG Yan. Effects and Possible Mechanism of BMP9 on the Bone Metastasis of Human Breast Cancer Cells MDA-MB-231[J]. China Biotechnology, 2012, 32(03): 7-13.
[13] XIE Qiu-ling, LU Jia, LIU Lan, ZHANG Chuan-yu, GUO Xin-yong, PENG Wen-dan, CHEN Xiao-jia. Study of Human PDGFR β Promoter in Different Human Breast Cancer Cells[J]. China Biotechnology, 2011, 31(04): 18-24.
[14] ZHAO Wei, HAN Hai-bo, ZHANG Zhi-qian. The Effects of Human PEX, a C-terminal Hemopexin-like Domain of MMP-2, on the Growth and Metastasis of Human Breast Cancer BICR-H1 Cells[J]. China Biotechnology, 2011, 31(03): 13-17.
[15] DENG Meng-yao, CAO Ya. Advances in the Serum Secretome of Cancer[J]. China Biotechnology, 2010, 30(11): 83-87.