Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (4): 30-40    DOI: 10.13523/j.cb.2210002
    
Prokaryotic Expression, Purification and Functional Verification of ASAT1 Gene of Nicotiana tabacum
HAN Li1,**(),WANG Li-jiao1,XIAO Cheng-zhi1,DONG Zi-qiang1,DU Yue1,HE Pei-xin1,2
1. School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China
2. Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou 450000, China
Download: HTML   PDF(2083KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: It is reported that NtASAT1 (Nicotiana tabacum acylsugar acyltransferase) from tobacco can transform sucrose and short branched chain fatty acids to sucrose monoester. Thus, we tried to use the prokaryotic expression system of Escherichia coli to analyze the expression and purification condition of NtASAT1 and further verify the function of purified NtASAT1. Methods: First, the physical and chemical properties, secondary structure and homology of tobacco NtASAT1 were analyzed by bioinformatics software. Then, the gene NtASAT1 was cloned from the cDNA of tobacco glandular hairs and constructed into the expression vector so as to study its expression in BL21 (DE 3). Finally, NtASAT1 was purified by nickel column and the activity of purified target protein was then analyzed by enzyme reaction. The product of the enzymatic reaction was analyzed by liquid chromatography-mass spectrometry (LC-MS). Results: NtASAT1, which was truncated by 93 amino acids at the C-terminal, could be expressed in BL21 (DE3). Most of the expressed protein existed in an insoluble state and different concentrations of inducer, induction time and induction temperature had no obvious effect on the soluble expression of the protein trNtASAT1. The target protein was purified by nickel column and after enzyme reaction by adding substrate, the product sucrose monoester could be detected by LC-MS. Conclusion: The recombinant protein trNtASAT1 was cloned and purified and the enzymatic product sucrose monoester was detected by LC-MS, which proved that the purified NtASAT1 was functional. This study laid the foundation for purification and further application of enzyme ASAT in industry.



Key wordsNicotiana tabacum      Acylsugar acyltransferase      Expression      Purification     
Received: 07 October 2022      Published: 04 May 2023
ZTFLH:  Q786  
Cite this article:

HAN Li, WANG Li-jiao, XIAO Cheng-zhi, DONG Zi-qiang, DU Yue, HE Pei-xin. Prokaryotic Expression, Purification and Functional Verification of ASAT1 Gene of Nicotiana tabacum. China Biotechnology, 2023, 43(4): 30-40.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2210002     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I4/30

Fig.1 Secondary structure of NtASAT1 protein Blue, purple, red and green represent α-spiral, random crimp, extension chain β-corner, respectively; The horizontal axis represents the number of amino acids
名称 核苷酸同源性/% 氨基酸同源性/%
SlASAT1 45.00 33.40
SlASAT2 44.48 31.10
SlASAT3 45.03 28.89
SlASAT4 38.89 20.83
PaxASAT1 66.92 60.11
PaxASAT2 45.18 33.83
PaxASAT3 47.13 35.06
PaxASAT4 42.74 28.85
SsASAT1 67.22 60.52
SsASAT2 43.77 35.38
SsASAT3 46.58 33.82
SsASAT5 38.84 30.80
Table 1 Homology analysis of NtASAT1 protein
Fig.2 Evolutionary tree analysis of NtASAT1 protein Sequence analysis was performed using MEGA7, the sequence alignment of ASAT from Solanum lycopersicum, Nicotiana tabacum, Petunia axillaris, Salpiglossis sinuate and wild tomato species and target species are marked in red. Phylogenetic trees were constructed using the Neighbor-Joining method and the Jones-Taylor-Thornton model. A bootstrap test of 1 000 replicates was used to assess the reliability of the phylogeny
Fig.3 Cloning of NtASAT1 gene and identification of expression vector (a) Cloning of NtASAT1 gene; M: Molecular weight standard of nucleic acid; 1: NtASAT1 cloning results (b) Colony PCR results; M: Molecular weight standard of nucleic acid; 1-4: Colony PCR identification results (c) Double enzyme digestion identification results; M: Molecular weight standard of nucleic acid; 1-4: Double digestion identification results
Fig.4 Expression of NtASAT1 protein (a) Expression of intact protein NtASAT1. M: Protein marker; 1: NtASAT1 [BL21 (DE3)] whole cell without inducer; 2: NtASAT1 [BL21 (DE3)] whole cell was added (b) The expression of truncated NtASAT1, where trNtASAT1 indicated by the arrow is the target protein. M: Protein marker; 1: The whole cell without inducer truntNtASAT1 [BL21 (DE3)]; 2: Add inducer truntNtASAT1 [BL21 (DE3)] to the whole cell (c) Amino acid sequence alignment analysis of acyl glycosyl acyltransferases from different sources and red arrow represents truncated site
Fig.5 Effects of different inducer concentrations, induction time and induction temperature on the expression of recombinant protein (a) The effect of IPTG concentration on the expression of recombinant protein, the arrow points to the target protein. M: Protein molecular weight standard; 1~2, 3~4, 5~6, 7~8 were induced by IPTG of 0.05 mmol/L, 0.1 mmol/L, 0.2 mmol/L, 0.5 mmol/L, respectively; S: Supernatant part after wall breaking; C: Sedimentation part after wall breaking (b) The effect of induction temperature on the expression of recombinant protein, the arrow points to the target protein. M: Protein molecular weight standard; 1~2, 3~4, 5~6, 7~8 were induced at 16℃, 20℃, 28℃, 37℃, respectively; S: Supernatant part after wall breaking; C: Sedimentation part after wall breaking (c) The effect of induction time on the expression of recombinant protein, the arrow refers to the target protein. M: Protein molecular weight standard; 1~2, 3~4, 5~6, 7~8 were induced for 4 h, 8 h, 12 h, 24 h, respectively; S: Supernatant part after wall breaking; C: Sedimentation part after wall breaking
Fig.6 Purification of recombinant protein M: Protein marker; 1: Whole protein; 2: Flow through; 3: Elution component (10 mmol/L imidazole); 4: Elution component (50 mmol/L imidazole); 5: Elution component (100 mmol/L imidazole); 6: Elution component (200 mmol/L imidazole); 7: Elution component (500 mmol/L imidazole)
Fig.7 Validation of trNtASAT1 enzyme activity (a) The recombinant trNtASAT1 produced S1:5 in vitro with sucrose as acyl receptor and iC5 CoA as acyl donor; Negative ion mode chromatogram with charge ratio of reactant 471.2 (b) The mass charge ratio of the product is 471.2, and the collision voltage is 20 V
[1]   Baker I J A, Furlong D N, Grieser F, et al. Sugar fatty acid ester surfactants: base-catalyzed hydrolysis. Journal of Surfactants and Detergents, 2000, 3(1): 29-32.
doi: 10.1007/s11743-000-0109-0
[2]   de Sousa D P, Gonçalves J C R, Quintans-Júnior L, et al. Study of anticonvulsant effect of citronellol, a monoterpene alcohol, in rodents. Neuroscience Letters, 2006, 401(3): 231-235.
pmid: 16650577
[3]   Ye R, Hayes D G. Lipase-catalyzed synthesis of saccharide-fatty acid esters utilizing solvent-free suspensions: effect of acyl donors and acceptors, and enzyme activity retention. Journal of the American Oil Chemists’ Society, 2012, 89(3): 455-463.
doi: 10.1007/s11746-011-1919-4
[4]   Neta N S, Peres A M, Teixeira J A, et al. Maximization of fructose esters synthesis by response surface methodology. New Biotechnology, 2011, 28(4): 349-355.
doi: 10.1016/j.nbt.2011.02.007 pmid: 21356336
[5]   周莉, 刘波, 王玮, 等. 水乳化法合成蔗糖酯. 深圳大学学报, 1994, 11(S1): 87-91.
[5]   Zhou L, Liu B, Wang W, et al. Preparation of sucrose esters by emulsion method. Shenzhen University Journal, 1994, 11(S1): 87-91.
[6]   马亚茹. 糖酯的酶促合成及其功能特性的研究. 广州: 暨南大学, 2018.
[6]   Ma Y R. The enzymatic synthesis and functional properties of sugar esters. Guangzhou: Jinan University, 2018.
[7]   秦林莉, 刘郅骞, 张静, 等. 蔗糖酯在食品工业中的应用研究进展. 中国调味品, 2022, 47(4): 207-211, 220.
[7]   Qin L L, Liu Z Q, Zhang J, et al. Research progress on application of sucrose ester in food industry. China Condiment, 2022, 47(4): 207-211, 220.
[8]   施若晗, 陈敏, 张祥民. 二维色谱-质谱联用测定烟草中的蔗糖酯//中国化学会, 第22届全国色谱学术报告会及仪器展览会. 上海: 中国化学会, 2019: 364.
[8]   Shi R H, Chen M, Zhang X M. Determination of sucrose esters in tobacco by two-dimensional chromatography-mass spectrometry//Chinese Chemical Society, The 22nd National Chromatographic Symposium and Instrument Exhibition. Shanghai: Chinese Chemical Society, 2019: 364.
[9]   吴琼, 孙姣, 刘一宁, 等. 蔗糖酯在药物递送系统的应用研究进展. 精细化工, 2021, 38(2): 276-281.
[9]   Wu Q, Sun J, Liu Y N, et al. Research progress of application of sucrose esters in drug delivery system. Fine Chemicals, 2021, 38(2): 276-281.
[10]   曾清清, 张立彦. 鸡骨高汤乳化条件及乳化稳定性的研究. 中国调味品, 2014, 39(2): 1-6.
[10]   Zeng Q Q, Zhang L Y. Study on emulsification conditions and emulsion stability of chicken bone stock. China Condiment, 2014, 39(2): 1-6.
[11]   付莉, 宋更申. 药用辅料蔗糖硬脂酸酯的研究概况. 中国药师, 2013, 16(12): 1924-1925.
[11]   Fu L, Song G S. General situation of research on sucrose stearate as pharmaceutical auxiliary material. China Pharmacist, 2013, 16(12): 1924-1925.
[12]   Chortyk O T, Pomonis J G, Johnson A W. Syntheses and characterizations of insecticidal sucrose esters. Journal of Agricultural and Food Chemistry, 1996, 44(6): 1551-1557.
doi: 10.1021/jf950615t
[13]   Zheng Z Y, Qualley A, Fan B F, et al. An important role of a BAHD acyl transferase-like protein in plant innate immunity. The Plant Journal: for Cell and Molecular Biology, 2009, 57(6): 1040-1053.
doi: 10.1111/tpj.2009.57.issue-6
[14]   Schilmiller A L, Charbonneau A L, Last R L. Identification of a BAHD acetyltransferase that produces protective acyl sugars in tomato trichomes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40): 16377-16382.
[15]   St-Pierre B, De Luca V. Evolution of acyltransferase genes: origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. Recent Advances in Phytochemistry, 2000, 34: 285-315.
[16]   Nadakuduti S S, Uebler J B, Liu X X, et al. Characterization of trichome-expressed BAHD acyltransferases in Petunia axillaris reveals distinct acylsugar assembly mechanisms within the solanaceae. Plant Physiology, 2017, 175(1): 36-50.
doi: 10.1104/pp.17.00538 pmid: 28701351
[17]   Chang A X, Hu Z Y, Chen B, et al. Characterization of trichome-specific BAHD acyltransferases involved in acylsugar biosynthesis in Nicotiana tabacum. Journal of Experimental Botany, 2022, 73(12): 3913-3928.
doi: 10.1093/jxb/erac095
[18]   Fan P X, Miller A M, Schilmiller A L, et al. In vitro reconstruction and analysis of evolutionary variation of the tomato acylsucrose metabolic network. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(2): E239-E248.
[19]   Schilmiller A L, Moghe G D, Fan P X, et al. Functionally divergent alleles and duplicated loci encoding an acyltransferase contribute to acylsugar metabolite diversity in Solanum trichomes. The Plant Cell, 2015, 27(4): 1002-1017.
doi: 10.1105/tpc.15.00087 pmid: 25862303
[20]   Kim J, Kang K, Gonzales-Vigil E, et al. Striking natural diversity in glandular trichome acylsugar composition is shaped by variation at the acyltransferase 2 locus in the wild tomato Solanum habrochaites. Plant Physiology, 2012, 160(4): 1854-1870.
doi: 10.1104/pp.112.204735
[21]   Moghe G D, Leong B J, Hurney S M, et al. Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway. eLife, 2017, 6: e28468.
[22]   徐阳, 何好, 朱国庆, 等. 细叶百合LpPEX5基因克隆及蛋白表达纯化. 生物技术, 2020, 30(5): 417-423, 448.
[22]   Xu Y, He H, Zhu G Q, et al. Cloning of LpPEX5 gene from Lilium pumilum and protein expression and purification. Biotechnology, 2020, 30(5): 417-423, 448.
[23]   王会平, 郜赵伟, 刘冲, 等. CD14蛋白表达、纯化及单克隆抗体制备. 现代生物医学进展, 2020, 20(19): 3616-3620.
[23]   Wang H P, Gao Z W, Liu C, et al. Expression and purification of CD14 protein and preparation of anti-CD14 monoclonal antibody. Progress in Modern Biomedicine, 2020, 20(19): 3616-3620.
[24]   吴思思, 蒋维. 人生长分化因子11基因原核表达质粒的构建、表达及其蛋白的纯化. 中国生物制品学杂志, 2018, 31(7): 723-727.
[24]   Wu S S, Jiang W. Construction of prokaryotic expression vector for human growth differentiation factor 11 gene and expression and purification of target protein. Chinese Journal of Biologicals, 2018, 31(7): 723-727.
[25]   李聪, 田培洁, 张宇, 等. 烟草花叶病毒P54基因的原核表达与蛋白纯化. 福建农业学报, 2021, 36(2): 209-214.
[25]   Li C, Tian P J, Zhang Y, et al. Prokaryotic expression and purification of tobacco mosaic virus specific P54 protein. Fujian Journal of Agricultural Sciences, 2021, 36(2): 209-214.
[26]   刘雨雨, 莫婷, 王晓晖, 等. 植物来源BAHD酰基转移酶家族研究进展. 中国中药杂志, 2016, 41(12): 2175-2182.
[26]   Liu Y Y, Mo T, Wang X H, et al. Research progress of plant BAHD acyltransferase family. China Journal of Chinese Materia Medica, 2016, 41(12): 2175-2182.
[27]   苏鹏, 龚国利. 优化大肠杆菌表达外源蛋白的研究进展. 生物技术通报, 2017, 33(2): 16-23.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.02.003
[27]   Su P, Gong G L. Research progress on optimizing the expression of exogenous proteins in Escherichia coli. Biotechnology Bulletin, 2017, 33(2): 16-23.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.02.003
[28]   Dhakal S, Sapkota K, Huang F Q, et al. Cloning, expression and purification of the low-complexity region of RanBP9 protein. Protein Expression and Purification, 2020, 172: 105630.
[29]   唐王刚, 司雨, 张娜, 等. 结核分枝杆菌蛋白Rv1872c的表达、纯化及其生物信息学分析. 中国生物制品学杂志, 2020, 33(10): 1117-1121, 1127.
[29]   Tang W G, Si Y, Zhang N, et al. Expression, purification and bioinformatics of Mycobacterium tuberculosis protein Rv1872c. Chinese Journal of Biologicals, 2020, 33(10): 1117-1121, 1127.
[30]   曹拓, 魏准, 彭湘明. 人CC趋化因子配体17重组蛋白的原核表达、纯化及趋化活性分析. 中国生物制品学杂志, 2020, 33(10): 1128-1133, 1142.
[30]   Cao T, Wei Z, Peng X M. Prokaryotic expression, purification and chemotactic activity of recombinant human CC chemokine ligand 17. Chinese Journal of Biologicals, 2020, 33(10): 1128-1133, 1142.
[31]   林丽淑, 龙韵洪, 徐丽惠, 等. 重组人抗缪勒管激素C-末端蛋白的原核表达及纯化. 中国生物制品学杂志, 2020, 33(8): 890-893.
[31]   Lin L S, Long Y H, Xu L H, et al. Prokaryotic expression and purification of recombinant C-terminal protein of human anti-Müllerian hormone. Chinese Journal of Biologicals, 2020, 33(8): 890-893.
[32]   梁秋瑾. SUMO蛋白酶Ulp1的固定化及其应用研究. 重庆: 西南大学, 2017.
[32]   Liang Q J. The study of the immobilization of Ulp1 protease and its applications. Chongqing: Southwest University, 2017.
[33]   Puig O, Caspary F, Rigaut G, et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods, 2001, 24(3): 218-229.
doi: 10.1006/meth.2001.1183 pmid: 11403571
[1] HAO Dong-xia, TIAN Meng-yuan, LIU Yang, LI Xing, ZHANG Yuan. Basic Properties and Applications of Milk Exosomes[J]. China Biotechnology, 2023, 43(2/3): 26-42.
[2] FENG Zhao, LIU Shi-peng, QIN Yang. Genome-wide Identification of GRAS Gene Family in Senna tora L. and Its Expression Analysis under Salt and Drought Stress[J]. China Biotechnology, 2023, 43(1): 1-17.
[3] LIN Yue-yang, KE Wen-feng, REN He, BAI Zhong-hu. Recombinant Expression of sFlt-1, a Marker of Circulatory System in Preeclampsia, and Establishment of a Chemiluminescence Detection Method[J]. China Biotechnology, 2023, 43(1): 27-34.
[4] WANG Yu-hang, CHEN Xue-ming, LIU Su-sheng, RUAN Zhi-jun, ZHANG Min, SONG Chun-li, YIN Feng, LI Zi-gang. A Solid-phase Synthesis Method and Purification of Polypeptides[J]. China Biotechnology, 2023, 43(1): 35-41.
[5] ZOU Qi, PAN Wei-song, QIU Jian, SHU Wen-sheng, WU Chuan. Recent Advances in Optimization Strategies and Applications of Plant Bioreactors[J]. China Biotechnology, 2023, 43(1): 71-86.
[6] LIU Yang,PENG Cui,WU Yan-chen,DENG Xi-wan,MAO Xin-fang,LIU Zhong-yuan. Free Radical Scavenging Activity and Antioxidant Capacity of Metallothionein HcMT from Halostachys caspica in vitro[J]. China Biotechnology, 2022, 42(9): 17-26.
[7] REN Zi-qiang,WANG Meng-can,ZHANG Hai-ling,ZHU Xi-qiang,LIN Jian. Research Progress of Glycoprotein Expression in CHO Cells[J]. China Biotechnology, 2022, 42(6): 54-65.
[8] ZHANG Yi, WANG Chen, SHI Jing-jing, CHEN Xue-jun, ZHANG Rui-hua, JIN Qian, SHI Tong, LI Li-qin. Establishment of Human GABAAR-CHO Cell Line Stable Expression[J]. China Biotechnology, 2022, 42(3): 38-46.
[9] WANG Rong-xiang,SONG Jia,SUN Bo,YAN Xue,ZHANG Wan-zhong,ZHAO Chen. Research Progress of Function and Biosynthesis of Coumarins[J]. China Biotechnology, 2022, 42(12): 79-90.
[10] Qiong WU,Xin ZHAO,Yu-yao DU,Shu-hong MAO. Co-expression and Functional Analysis of Cytochrome P450 Reductase and CYP17[J]. China Biotechnology, 2022, 42(10): 1-8.
[11] Li MENG,Cai-ping DU. Protein Preparation and Activity Identification of Rat Sentrin-specific Protease 1 Catalytic Domain[J]. China Biotechnology, 2022, 42(10): 31-38.
[12] Xiang-zhi LIU,Chi CHENG,Yue ZHAO,Chao-jun WANG,Ying ZHANG,Chuang XUE. Induction and Regulation of Cellulase Synthesis in Trichoderma reesei[J]. China Biotechnology, 2022, 42(10): 93-104.
[13] ZHAO Bing-jie,GUO Yan-bin. Advances in Extraction, Purification and Bioactivity of Polysaccharides from Edible Fungi[J]. China Biotechnology, 2022, 42(1/2): 146-159.
[14] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[15] ZHANG Ling,CAO Xiao-dan,YANG Hai-xu,LI Wen-lei. The Application of Continuous Purification in Affinity Chromatography and Evaluation of Production Scale-up[J]. China Biotechnology, 2021, 41(6): 38-44.