Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (9): 17-26    DOI: 10.13523/j.cb.2204041
    
Free Radical Scavenging Activity and Antioxidant Capacity of Metallothionein HcMT from Halostachys caspica in vitro
LIU Yang,PENG Cui,WU Yan-chen,DENG Xi-wan,MAO Xin-fang,LIU Zhong-yuan**()
College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
Download: HTML   PDF(962KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To express metallothionein HcMT of Halostachys caspica in prokaryotic cells and explore its antioxidant activity, so as to lay a foundation for its application in the field of cosmetics. Methods: the prokaryotic expression vector pET-32a-HcMT was constructed, transformed into Escherichia coli BL21, cultured under Zn2+ stress (the final concentration was 200 μmol/L), separated and purified to obtain Zn-HcMT, and its free radical scavenging activity and total antioxidant capacity were measured. The complex Zn-HcMT/TiO2 was prepared and characterized by FTIR. Results: The fusion protein Zn-HcMT was obtained by prokaryotic expression. It had strong scavenging activity for ·OH,O2·- and DPPH free radicals. The IC50 of ·OH and O2·-were 0.386 mg/mL, 0.038 mg/mL, respectively. The DPPH clearance rate of 0.01 mg/mL fusion protein was (37.43 ± 0.006 8)%, the TEAC value of 0.3mg/mL fusion protein was (1.023 ± 0.01)mmol/L, and the reducing power of 0.3 mg/mL fusion protein A700 was 0.142 ± 0.055. FTIR spectra showed the absorption characteristics of Zn-HcMT and TiO2 at the same time. Conclusion: Zn-HcMT has a good ROS scavenging activity and strong antioxidant capacity. It has great application potential in the field of cosmetics.



Key wordsHalostachys caspica metallothionein      Prokaryotic expression      Free radical      Functional activity      Sunscreen cream     
Received: 19 April 2022      Published: 10 October 2022
ZTFLH:  Q819  
Corresponding Authors: Zhong-yuan LIU     E-mail: lzy1168@163.com
Cite this article:

LIU Yang,PENG Cui,WU Yan-chen,DENG Xi-wan,MAO Xin-fang,LIU Zhong-yuan. Free Radical Scavenging Activity and Antioxidant Capacity of Metallothionein HcMT from Halostachys caspica in vitro. China Biotechnology, 2022, 42(9): 17-26.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2204041     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I9/17

Fig.1 Expression of recombinant protein Zn-HcMT M: Protein molecular weight marker; 1: Lysis of Escherichia coli without induced by IPTG; 2: Lysis of Escherichia coli after induced by IPTG
Fig.2 Purification of recombinant protein Zn-HcMT M: Protein molecular weight marker; 1: Lysis of Escherichia coli without induced by IPTG; 2: Lysis of Escherichia coli after induced by IPTG; 3: Flow through liquid component; 4: Eluate with 5 mmol/L imidazole; 5: Eluate with 5 mmol/L imidazole; 6: Eluate with 10 mmol/L imidazole; 7: Eluate with 100 mmol/L imidazole; 8: Eluate with 200 mmol/L imidazole; 9: Eluate with 500 mmol/L imidazole
Fig.3 Clearance rate of hydroxyl radical by Zn-HcMT
Fig.4 Inhibition curve of pyrogallol autoxidation rate of different proteins Group C: Pyrogallol autoxidation rate
Fig.5 Superoxide radical clearance rate of Zn-HcMT
Fig.6 DPPH clearance curves
Fig.7 Reduction force curves of samples with different concentrations
Fig.8 Total antioxidant capacity curve of samples with different concentrations
Fig.9 FTIR spectra of Zn-HcMT/TiO2 composites
No Observed
frequency /cm
Peak assignment Visible Founctional group
intensity
1 3 396.02 O-H Stretching Strong Phenols
2 3 233.96 N-H Stretching Strong Benzenering
3 2 985.10 C-H Stretching Medium Alkanes
4 2 596.10 S-H Stretching Medium Sulfhydryl group
5 1 630.98 C=O Bond Strong Amines
6 1 551.94 C=C Stretching Strong Phenols
7 1 396.29 C-N Stretching Strong Alipahtic amines
8 1 297.51 C-O Stretching Strong Secondary alcohol
9 1 042.85 C-N Stretching Strong Alipahtic amines
10 597.93 Ti-O-Ti Stretching Strong Mental oxide
Table 1 FTIR spectral analysis of Zn-HcMT/TiO2 composites
[1]   SAEED-UR-RAHMAN, Khalid M, Hui N, et al. Diversity and versatile functions of metallothioneins produced by plants: a review. Pedosphere, 2020, 30(5): 577-588.
doi: 10.1016/S1002-0160(20)60022-4
[2]   樊威, 焦晓磊, 苏建, 等. 金属硫蛋白调控及重金属解毒功能研究进展. 农业与技术, 2020, 40(1): 7-9.
[2]   Fan W, Jiao X L, Su J, et al. Research progress of metallothionein regulation and heavy metal detoxification. Agriculture and Technology, 2020, 40(1): 7-9.
[3]   于颖敏. 金属硫蛋白的结构、性能和应用. 中国石油大学胜利学院学报, 2006, 20(4): 22-24.
[3]   Yu Y M. Structure, properties and applications of metallothionein. Journal of Shengli College China University of Petroleum, 2006, 20(4): 22-24.
[4]   Maarman G J. Pulmonary arterial hypertension and the potential roles of metallothioneins: a focused review. Life Sciences, 2018, 214: 77-83.
doi: S0024-3205(18)30664-7 pmid: 30355531
[5]   Merlos Rodrigo M A, Jimenez Jimemez A M, Haddad Y, et al. Metallothionein isoforms as double agents - Their roles in carcinogenesis, cancer progression and chemoresistance. Drug Resistance Updates, 2020, 52: 100691.
doi: 10.1016/j.drup.2020.100691
[6]   Swindell W R. Metallothionein and the biology of aging. Ageing Research Reviews, 2011, 10(1): 132-145.
doi: 10.1016/j.arr.2010.09.007 pmid: 20933613
[7]   Samuel M S, Datta S, Khandge R S, et al. A state of the art review on characterization of heavy metal binding metallothioneins proteins and their widespread applications. Science of the Total Environment, 2021, 775: 145829.
doi: 10.1016/j.scitotenv.2021.145829
[8]   Mackay E A, Overnell J, Dunbar B, et al. Complete amino acid sequences of five dimeric and four monomeric forms of metallothionein from the edible mussel Mytilus edulis. European Journal of Biochemistry, 1993, 218(1): 183-194.
pmid: 8243463
[9]   吕新芳, 毛伟腾, 滑朝阳, 等. 海洋无脊椎动物金属硫蛋白研究进展. 海洋通报, 2015, 34(3): 241-246.
[9]   Lv X F, Mao W T, Hua Z Y, et al. A review on the research of metallothionein in marine invertebrates. Marine Science Bulletin, 2015, 34(3): 241-246.
[10]   徐炳政, 王颖, 张东杰, 等. 酵母源金属硫蛋白体外清除自由基及抑菌活性的研究. 食品工业科技, 2014, 35(21): 111-114.
[10]   Xu B Z, Wang Y, Zhang D J, et al. Study on scavenging free radical and antibacterial activities in vitro of metallothioneins from yeast. Science and Technology of Food Industry, 2014, 35(21): 111-114.
[11]   Meng C Y, Wang K W, Zhang X J, et al. Purification, secondary structure and antioxidant activity of metallothionein zinc-binding proteins from Arca subcrenata. Protein Expression and Purification, 2021, 182: 105838.
doi: 10.1016/j.pep.2021.105838
[12]   Li H, Malyar R M, Zhai N H, et al. Zinc supplementation alleviates OTA-induced oxidative stress and apoptosis in MDCK cells by up-regulating metallothioneins. Life Sciences, 2019, 234: 116735.
doi: 10.1016/j.lfs.2019.116735
[13]   Xue T T, Li X Z, Zhu W, et al. Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. Journal of Experimental Botany, 2009, 60(1): 339-349.
doi: 10.1093/jxb/ern291 pmid: 19033550
[14]   Liu Z Y, Meng H E, Abdulla H, et al. Cloning and characterization of metallothionein gene (HcMT) from Halostachys caspica and its expression in E. coli. Gene, 2016, 585(2): 221-227.
doi: 10.1016/j.gene.2016.03.039
[15]   Rashid M M, Simončič B, Tomšič B. Recent advances in TiO2-functionalized textile surfaces. Surfaces and Interfaces, 2021, 22: 100890.
doi: 10.1016/j.surfin.2020.100890
[16]   Xu F. Review of analytical studies on TiO2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization. Chemosphere, 2018, 212: 662-677.
doi: 10.1016/j.chemosphere.2018.08.108
[17]   Lincho J, Gomes J, Kobylanski M, et al. TiO2 nanotube catalysts for parabens mixture degradation by photocatalysis and ozone-based technologies. Process Safety and Environmental Protection, 2021, 152: 601-613.
doi: 10.1016/j.psep.2021.06.044
[18]   Tekin D, Birhan D, Kiziltas H. Thermal, photocatalytic, and antibacterial properties of calcinated nano-TiO2/polymer composites. Materials Chemistry and Physics, 2020, 251: 123067.
doi: 10.1016/j.matchemphys.2020.123067
[19]   Bragaglia M, Cherubini V, Nanni F. PEEK-TiO2 composites with enhanced UV resistance. Composites Science and Technology, 2020, 199: 108365.
doi: 10.1016/j.compscitech.2020.108365
[20]   Torbati T V, Javanbakht V. Fabrication of TiO2/Zn2TiO4/Ag nanocomposite for synergic effects of UV radiation protection and antibacterial activity in sunscreen. Colloids and Surfaces B: Biointerfaces, 2020, 187: 110652.
doi: 10.1016/j.colsurfb.2019.110652
[21]   Gollavilli H, Hegde A R, Managuli R S, et al. Naringin nano-ethosomal novel sunscreen creams: development and performance evaluation. Colloids and Surfaces B: Biointerfaces, 2020, 193: 111122.
doi: 10.1016/j.colsurfb.2020.111122 pmid: 32498002
[22]   Almutairi B, Ali D, Alyami N, et al. Tantalum doped TiO2 nanoparticles induced cytotoxicity and DNA damage through ROS generation in human neuroblastoma cells. Journal of King Saud University-Science, 2021, 33(6): 101546.
doi: 10.1016/j.jksus.2021.101546
[23]   包怡红, 盛和静. 山核桃蛋白多肽的制备及对羟自由基的清除作用. 食品科学, 2005, 26(9): 515-518.
[23]   Bao Y H, Sheng H J. Research on the technology of peptides derived from walnut protein and its effects on scavenging of hydroxyl radicals. Food Science, 2005, 26(9): 515-518.
[24]   中华人民共和国卫生部, 中国国家标准化管理委员会. 保健食品中超氧化物歧化酶(SOD)活性的测定: GB/T 5009.171—2003. 北京:中国标准出版社, 2004.
[24]   Ministry of Health of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Determination of the action of superoxide dismutase in health foods:GB/T 5009.171-2003[S]. Beijing: Standards Press of China, 2004.
[25]   任薇, 包晓玮, 张志芳, 等. 沙棘多糖清除自由基及抗脂质过氧化作用研究. 食品工业科技, 2019, 40(8): 272-277.
[25]   Ren W, Bao X W, Zhang Z F, et al. Study on free radical scavenging and anti-lipid peroxidation of seabuckthorn polysaccharide. Science and Technology of Food Industry, 2019, 40(8): 272-277.
[26]   吴振, 李红, 罗杨, 等. 不同干燥方式对银耳多糖理化特性及抗氧化活性的影响. 食品科学, 2014, 35(13): 93-97.
[26]   Wu Z, Li H, Luo Y, et al. Effects of different drying methods on physio-chemical properties and antioxidant activities of polysaccharides extracted from Tremella fuciformis. Food Science, 2014, 35(13): 93-97.
[27]   程超. 麦冬果实蓝色素的抗氧化特性研究. 中国酿造, 2009, 28(4): 58-60.
[27]   Cheng C. Antioxidation acitivity of blue pigment from Ophiopgon japonicus (Thunb) Ker gawl. China Brewing, 2009, 28(4): 58-60.
[28]   Sato M, Bremner I. Oxygen free radicals and metallothionein. Free Radical Biology and Medicine, 1993, 14(3): 325-337.
pmid: 8458590
[29]   Qureshi S, Chandra S, Chopra D, et al. Nabumetone induced photogenotoxicity mechanism mediated by ROS generation under environmental UV radiation in human keratinocytes (HaCaT) cell line. Toxicology and Applied Pharmacology, 2021, 420: 115516.
doi: 10.1016/j.taap.2021.115516
[30]   Daund V, Chalke S, Sherje A P, et al. ROS responsive mesoporous silica nanoparticles for smart drug delivery: a review. Journal of Drug Delivery Science and Technology, 2021, 64: 102599.
doi: 10.1016/j.jddst.2021.102599
[31]   Haag F, Janicova A, Xu B, et al. Reduced phagocytosis, ROS production and enhanced apoptosis of leukocytes upon alcohol drinking in healthy volunteers. European Journal of Trauma and Emergency Surgery: Official Publication of the European Trauma Society, 2021. DOI: 10.1007/s00068-021-01643-x.
doi: 10.1007/s00068-021-01643-x
[32]   Zhao Y N, Yu H, Zhou J M, et al. Malate circulation: linking chloroplast metabolism to mitochondrial ROS. Trends in Plant Science, 2020, 25(5): 446-454.
doi: S1360-1385(20)30027-3 pmid: 32304657
[33]   Kan G F, Ju Y, Zhou Y, et al. Cloning and functional characterization of a novel metallothionein gene in Antarctic sea-ice yeast (Rhodotorula mucilaginosa). Journal of Basic Microbiology, 2019, 59(9): 879-889.
doi: 10.1002/jobm.201900240 pmid: 31339587
[34]   Atif F, Kaur M, Yousuf S, et al. In vitro free radical scavenging activity of hepatic metallothionein induced in an Indian freshwater fish, Channa punctata Bloch. Chemico-Biological Interactions, 2006, 162(2): 172-180.
doi: 10.1016/j.cbi.2006.06.006
[35]   Huang S S, Deng J S, Chen H J, et al. Antioxidant activities of two metallothionein-like proteins from sweet potato (Ipomoea batatas [L.] Lam. ‘Tainong 57’) storage roots and their synthesized peptides. Botanical Studies, 2014, 55(1): 64.
doi: 10.1186/s40529-014-0064-4
[36]   Meir S, Kanner J, Akiri B, et al. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. Journal of Agricultural and Food Chemistry, 1995, 43(7): 1813-1819.
doi: 10.1021/jf00055a012
[37]   Duarte-Gutiérrez J, Leyva-Carrillo L, Martínez-Téllez M A, et al. Cloning, expression, purification and biochemical characterization of recombinant metallothionein from the white shrimp Litopenaeus vannamei. Protein Expression and Purification, 2020, 166: 105511.
doi: 10.1016/j.pep.2019.105511
[38]   Narayanan M, Vigneshwari P, Natarajan D, et al. Synthesis and characterization of TiO2 NPs by aqueous leaf extract of Coleus aromaticus and assess their antibacterial, larvicidal, and anticancer potential. Environmental Research, 2021, 200: 111335.
doi: 10.1016/j.envres.2021.111335
[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[3] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[4] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[5] LI Tong-tong,SONG Cai-ling,YANG Kai-yue,WANG Wen-jing,CHEN Hui-yu,LIU Ming. Preparation and Neutralization Activity of Anti-Canine Parvovirus VP2 Protein Single-chain Antibody[J]. China Biotechnology, 2020, 40(4): 10-16.
[6] CHEN Qiu-li,YANG Li-chao,LI Hui,WEN Sha,LI Gang,HE Min. Prokaryotic Expression,Purification and Preparation of Polyclonal Antibody of Human Nek2 Protein[J]. China Biotechnology, 2020, 40(3): 31-37.
[7] Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica[J]. China Biotechnology, 2019, 39(4): 24-31.
[8] Ming-ying LI,Ren-jun WANG,Fun ZHANG,Yan CHI. The Prokaryotic Expression and Activity Analysis of the Fifth Domain of β2GPⅠ and Its Mutants or Short Peptide Fragments[J]. China Biotechnology, 2018, 38(8): 1-9.
[9] Xiao-lu GUO,Xiu-fang GONG,Jia-feng CHEN,Chen-xi DING,Dan HU,Xiu-zhen PAN,Chang-jun WANG. Gene Cloning, Expression and Identification of Phosphoglyceric Kinase of Streptococcus suis Serotype 2[J]. China Biotechnology, 2018, 38(3): 16-23.
[10] Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO. Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System[J]. China Biotechnology, 2018, 38(2): 54-60.
[11] HE Ya-nan,SUN Yu-liang,REN Ya-kun,LIANG Sheng-ying,YANG Fen,LIU Yan-li,LIN Jun-tang. The Construction and Functional Analysis of Staphylococcal Enterotoxin-like K and GFP Fusion Protein[J]. China Biotechnology, 2018, 38(12): 14-20.
[12] Jian-wei REN,Jun LI,Shang-ze LI. Human CT55 Protein Prokaryotic Expression and Its Production of Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 1-8.
[13] SUN Wen-jia, YAO Yu-feng, YANG Xu, HUANG Wei-wei, LIU Cun-bao, LONG Qiong, CHU Xiao-jie, MA Yan-bing. Presentation of HPV 16L1 Peptide-based HBcAg Virus-like Particle and Induction of Specific Antibody[J]. China Biotechnology, 2017, 37(3): 58-64.
[14] TUERXUN Zulipiye, CAO Chun-bao, WEN Hao, DING Jian-bing, YIMITI Delixiati. Analysis of Gene Evolution, Protein Expression and Identification of Echinococcus granulosus EgG1Y162[J]. China Biotechnology, 2016, 36(4): 78-87.
[15] ZHOU Liang, YE Hao, ZHOU Li, GUAN Wen, LI Jing-jing, GAO Jin, HAN Wei, YU Yan. Prokaryotic Expression and Purification of Bioactive Human CXCL4[J]. China Biotechnology, 2016, 36(1): 7-13.