Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (4): 1-9    DOI: 10.13523/j.cb.2211006
    
MicroRNA Cluster 290-295 Enhances Somatic Cell Reprogramming
ZHU Si-ying1,2,YANG Yang2,LI Peng-dong2,XUE Yan-ting3,SHE Qin2,QI Ling2,ZHAO Guo-jun2,**(),LIAO Bao-jian2,3,**()
1. College of Pharmacy, Dali University, Dali 671000, China
2. The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China
3. Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
Download: HTML   PDF(1918KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To explore the effect of miR-290-295, the most abundantly expressed microRNA cluster in stem cells, as a whole on somatic cell reprogramming. Methods: The miR-290-295 cluster was overexpressed into mouse somatic cells using retroviral vectors to explore whether it promotes the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) and the effect on cell function through this process. Results: The overexpression of miR-290-295 cluster could significantly improve the efficiency of mouse somatic cell reprogramming in the traditional induction system of three factors (Sox2, Klf4 and Oct4). Overexpression of miR-290-295 cluster could not only promote the up-regulation of pluripotency marker genes and the down-regulation of somatic marker genes during reprogramming, but also the expression of mesenchymal-epithelial transition (MET) marker genes and cell proliferation related genes. Conclusion: miR-290-295 promotes the reprogramming of mouse somatic cells. Our findings are helpful to understand the RNA regulatory mechanism in stem cell pluripotency and reprogramming, and provide a new perspective for the development of new induction systems.



Key wordsSomatic cell reprogramming      Induced pluripotent stem cells      MicroRNA      MiR-290-295 cluster     
Received: 03 November 2022      Published: 04 May 2023
ZTFLH:  Q813  
Cite this article:

ZHU Si-ying, YANG Yang, LI Peng-dong, XUE Yan-ting, SHE Qin, QI Ling, ZHAO Guo-jun, LIAO Bao-jian. MicroRNA Cluster 290-295 Enhances Somatic Cell Reprogramming. China Biotechnology, 2023, 43(4): 1-9.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2211006     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I4/1

Fig.1 Efficiency of overexpression of miR-290-295 cluster (a) MiRNA profiling in mESCs and Plat-E by small RNA sequencing (b) Principles of RT-qPCR detection of miRNAs (c) Efficiency detection of overexpressed miR-290-295 clusters. Compared with flag control, *** indicate P<0.001, highly significant, n=3
miRNA Primer sequence (5'→3')
290-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAAAGTGCC
290-Q-forward ACACTCCAGCTGGGACTCAAACTATGGGGG
291A-5P-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAGAGAGGG
291A-5P-Q-forward ACACTCCAGCTGGGCATCAAAGTGGAGGCC
291A-3P-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGCACACAA
291A-3P-Q-forward ACACTCCAGCTGGGAAAGTGCTTCCACTTT
292A-5P-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCAAAAGAG
292A-5P-Q-forward ACACTCCAGCTGGGACTCAAACTGGGGGCT
292A-3P-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACACTCAA
292A-3P-Q-forward ACACTCCAGCTGGGAAAGTGCCGCCAGGTTTT
293-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACACTACA
293-Q-forward ACACTCCAGCTGGGAGTGCCGCAGAGTTTG
294-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACACACAA
294-Q-forward ACACTCCAGCTGGGAAAGTGCTTCCCTTTT
295-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAGACTCAA
295-Q-forward ACACTCCAGCTGGGAAAGTGCTACTACTTTT
U6-RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAAAAATATGG
U6-RT-Q-forward ACACTCCAGCTGGGCAAGGATGACACGCAAAT
Mi-Q-reverse TGGTGTCGTGGAGTCGGCAATT
Table 1 Primers for RT-qPCR
Fig.2 Overexpression of miR-290-295 cluster promotes reprogramming (a) Efficiency detection of overexpressed miR-290-295 clusters during reprogramming, n=3 (b)(c) Comparison of the number of Oct4-GFP positive clones after overexpression of miR-290-295 cluster. Compared with flag control, *** indicate P<0.001, highly significant, n=3 (d) RT-qPCR analysis for the pluripotency marker genes, n=3 (e) Immunofluorescent staining of generated iPSCs
Fig.3 miR-290-295 cluster promotes reprogramming through classical MET transition (a) Effect of overexpression of miR-290-295 on the expression of pluripotent marker genes (b) Effect of overexpression of miR-290-295 on the expression of mesenchymal-epithelial transition marker genes (Snai1, Snai2,Twist2, Cdh2 are mesenchymal cell marker genes, Cdh1, Epcam are epithelial marker genes), n=3
[1]   Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663-676.
doi: 10.1016/j.cell.2006.07.024 pmid: 16904174
[2]   Li L P, Chen K S, Wang T Y, et al. Glis1 facilitates induction of pluripotency via an epigenome-metabolome-epigenome signalling cascade. Nature Metabolism, 2020, 2(9): 882-892.
doi: 10.1038/s42255-020-0267-9 pmid: 32839595
[3]   Liao B J, Bao X C, Liu L Q, et al. MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. Journal of Biological Chemistry, 2011, 286(19): 17359-17364.
doi: 10.1074/jbc.C111.235960 pmid: 21454525
[4]   Esteban M A, Wang T, Qin B M, et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 2010, 6(1): 71-79.
doi: 10.1016/j.stem.2009.12.001 pmid: 20036631
[5]   Hou P P, Li Y Q, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 2013, 341(6146): 651-654.
doi: 10.1126/science.1239278 pmid: 23868920
[6]   Wang J, Yu H P, Ma Q, et al. Phase separation of OCT 4 controls TAD reorganization to promote cell fate transitions. Cell Stem Cell, 2021, 28(10): 1868-1883, e11.
doi: 10.1016/j.stem.2021.04.023 pmid: 34038708
[7]   Ying Z F, Xiang G, Zheng L J, et al. Short-term mitochondrial permeability transition pore opening modulates histone lysine methylation at the early phase of somatic cell reprogramming. Cell Metabolism, 2018, 28(6): 935-945, e5.
doi: S1550-4131(18)30502-3 pmid: 30174306
[8]   Wu Y, Chen K S, Xing G S, et al. Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition. Science Advances, 2019, 5(11): eaax7525.
doi: 10.1126/sciadv.aax7525
[9]   Yang Y, Liu B, Xu J, et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell, 2017, 169(2): 243-257, e25.
doi: S0092-8674(17)30183-6 pmid: 28388409
[10]   Xiang C G, Du Y Y, Meng G F, et al. Long-term functional maintenance of primary human hepatocytes in vitro. Science, 2019, 364(6438): 399-402.
doi: 10.1126/science.aau7307
[11]   Pei D Q, Beier D W, Levy-Lahad E, et al. Human embryo editing: opportunities and importance of transnational cooperation. Cell Stem Cell, 2017, 21(4): 423-426.
doi: S1934-5909(17)30377-6 pmid: 28985523
[12]   Gao X F, Nowak-Imialek M, Chen X, et al. Establishment of porcine and human expanded potential stem cells. Nature Cell Biology, 2019, 21(6): 687-699.
doi: 10.1038/s41556-019-0333-2 pmid: 31160711
[13]   Guan J Y, Wang G, Wang J L, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature, 2022, 605(7909): 325-331.
doi: 10.1038/s41586-022-04593-5
[14]   Geekiyanage H, Rayatpisheh S, Wohlschlegel J A, et al. Extracellular microRNAs in human circulation are associated with miRISC complexes that are accessible to anti-AGO2 antibody and can bind target mimic oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(39): 24213-24223.
[15]   Barwari T, Joshi A, Mayr M. MicroRNAs in cardiovascular disease. Journal of the American College of Cardiology, 2016, 68(23): 2577-2584.
doi: S0735-1097(16)36537-8 pmid: 27931616
[16]   Choi J, Kim Y K, Park K, et al. MicroRNA-139-5p regulates proliferation of hematopoietic progenitors and is repressed during BCR-ABL-mediated leukemogenesis. Blood, 2016, 128(17): 2117-2129.
pmid: 27605510
[17]   Wang Y, Yang Z F, Le W D. Tiny but mighty: promising roles of microRNAs in the diagnosis and treatment of parkinson’s disease. Neuroscience Bulletin, 2017, 33(5): 543-551.
doi: 10.1007/s12264-017-0160-z
[18]   Schweiger V, Hasimbegovic E, Kastner N, et al. Non-coding RNAs in stem cell regulation and cardiac regeneration: current problems and future perspectives. International Journal of Molecular Sciences, 2021, 22(17): 9160.
doi: 10.3390/ijms22179160
[19]   Coradduzza D, Cruciani S, Arru C, et al. Role of miRNA-145, 148, and 185 and stem cells in prostate cancer. International Journal of Molecular Sciences, 2022, 23(3): 1626.
doi: 10.3390/ijms23031626
[20]   Cao J Y, Wang B, Tang T T, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p 53 in ischemic acute kidney injury. Theranostics, 2021, 11(11): 5248-5266.
doi: 10.7150/thno.54550
[21]   Zhu J J, Yang S H, Qi Y D, et al. Stem cell-homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Science Advances, 2022, 8(13): eabk0011.
doi: 10.1126/sciadv.abk0011
[22]   Lee K S, Lee J, Kim H K, et al. Extracellular vesicles from adipose tissue-derived stem cells alleviate osteoporosis through osteoprotegerin and miR-21-5p. Journal of Extracellular Vesicles, 2021, 10(12): e12152.
[23]   Li M A, He L. MicroRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 2012, 34(8): 670-680.
doi: 10.1002/bies.v34.8
[24]   Xue Y C, Ouyang K F, Huang J, et al. Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell, 2013, 152(1-2): 82-96.
doi: 10.1016/j.cell.2012.11.045 pmid: 23313552
[25]   Schaefer M, Nabih A, Spies D, et al. Global and precise identification of functional miRNA targets in mESCs by integrative analysis. EMBO Reports, 2022, 23(9): e54762.
[26]   Liu Z M, Wang J, Li G, et al. Structure of precursor microRNA’s terminal loop regulates human Dicer’s dicing activity by switching DExH/D domain. Protein & Cell, 2015, 6(3): 185-193.
[27]   Shi M, Hao J, Wang X W, et al. Functional dissection of pri-miR-290- 295 in Dgcr8 knockout mouse embryonic stem cells. International Journal of Molecular Sciences, 2019, 20(18): 4345.
doi: 10.3390/ijms20184345
[28]   Gu K L, Zhang Q, Yan Y, et al. Pluripotency-associated miR-290/ 302 family of microRNAs promote the dismantling of naive pluripotency. Cell Research, 2016, 26(3): 350-366.
doi: 10.1038/cr.2016.2
[29]   Chen C F, Ridzon D A, Broomer A J, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 2005, 33(20): e179.
doi: 10.1093/nar/gni178 pmid: 16314309
[30]   Samavarchi-Tehrani P, Golipour A, David L, et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell, 2010, 7(1): 64-77.
doi: 10.1016/j.stem.2010.04.015 pmid: 20621051
[31]   Li Z H, Yang C S, Nakashima K, et al. Small RNA-mediated regulation of iPS cell generation. The EMBO Journal, 2011, 30(5): 823-834.
doi: 10.1038/emboj.2011.2
[32]   Li S J, Lei Z X, Sun T L. The role of microRNAs in neurodegenerative diseases: a review. Cell Biology and Toxicology, 2023, 39:53-83.
doi: 10.1007/s10565-022-09761-x
[33]   Tang F C, Barbacioru C, Bao S Q, et al. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-seq analysis. Cell Stem Cell, 2010, 6(5): 468-478.
doi: 10.1016/j.stem.2010.03.015 pmid: 20452321
[34]   Yang Q Y, Lin J M, Liu M, et al. Highly sensitive sequencing reveals dynamic modifications and activities of small RNAs in mouse oocytes and early embryos. Science Advances, 2016, 2(6): e1501482.
[35]   Medeiros L A, Dennis L M, Gill M E, et al. MiR-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(34): 14163-14168.
[1] DENG Si-yu, LIANG Bing, WEI Wei, WANG Meng-na, CAO You-de. Effects of miR-34a-5p on Triple Negative Breast Cancer Cells and Related Mechanisms[J]. China Biotechnology, 2023, 43(1): 18-26.
[2] QIAN Yu,DING Xiao-yu,LIU Zhi-qiang,YUAN Zeng-qiang. An Efficient Monoclonal Establishment Method of Genetically Modified Human Pluripotent Stem Cells[J]. China Biotechnology, 2021, 41(8): 33-41.
[3] CHEN Yu-qiong,TAN Wen-hua,LIU Hai-feng,CHEN Gen. Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression[J]. China Biotechnology, 2021, 41(5): 8-16.
[4] QIU Dan-dan,LU Cai-xia,DAI Jie-jie. Application of Hepatocyte-like Cells Derived from Induced Pluripotent Stem Cells in HCV Infection Model[J]. China Biotechnology, 2020, 40(11): 67-72.
[5] Pan-hong ZHANG,Lian-lian LI,Xiu-mei ZHANG,Jia-jun CUI,Yin-jie JIANG. Advances in the Relationship Between microRNA and Chemotherapy Resistance of Lung Cancer[J]. China Biotechnology, 2019, 39(7): 79-84.
[6] SHEN Bing-lei,WANG Yu-xuan,HAN Shuo,LI Xi,YANG Zhuo-ni-na,ZOU Zi-wen,LIU Juan. Research Progress of Non-coding RNA in Autophagy[J]. China Biotechnology, 2019, 39(12): 56-63.
[7] XIA Meng, TIAN Xiao-hong, BAI Shu-ling, HOU Wei-jian. Optimization of Induced Pluripotent Stem Cell Technology and Its Application Prospect[J]. China Biotechnology, 2016, 36(6): 87-91.
[8] LUO Jia, SHEN Lin yuan, LI Qiang, LI Xue wei, ZHANG Shun hua, ZHU Li. Research Progress of RNA Editing in Mammal Acting on Non-coding RNA[J]. China Biotechnology, 2016, 36(11): 76-82.
[9] XIN Jing, XU Yin-sheng, ZHANG Fang, SHENG Wang. The Function and Mechanism of MicroRNA-124 in Human Cervical Cancer[J]. China Biotechnology, 2015, 35(10): 13-19.
[10] MAN Chao-lai, TANG Gao-xia, ZHAO Li, LI Feng, ZHEN Xin. DNA Methylation and microRNAs[J]. China Biotechnology, 2014, 34(8): 81-87.
[11] MAN Chao-lai, YANG Mei-ling. Research Progress in Circulating MicroRNAs of Body Fluid[J]. China Biotechnology, 2014, 34(2): 104-108.
[12] MAN Chao-lai, CHANG Yang, TANG Gao-xia, ZHAO Li, LI Feng, ZHEN Xin, MI Xiao-ju. Research Progress of Genetic Adjuvant[J]. China Biotechnology, 2013, 33(7): 112-117.
[13] ZHAO Li-xia, ZHANG Jin-dun, ZHANG Jian, LI Yun-xia, SU Jie, SUN Wei, DAI Yan-feng, GUO Ji-tong, ZHAO Gao-ping, HU Shu-xiang, WANG Wei, LIU Pen-tao, LI Xi-he. Study on Generation of Bovine Induced Pluripotent Stem Cells Treated by piggyBac[J]. China Biotechnology, 2013, 33(2): 77-82.
[14] XU Ying-chen, GUAN Li-dong, ZHOU Jun-nian, ZENG Quan, YUAN Hong-feng, LI Si-ting, GUAN Zhao-xuan, HE Li-juan, NAN Xue, CHEN Lin, YUE Wen, PEI Xue-tao. Isolation and Identification of Liver Cancer Stem Cells and Analysis of Differentially Expressed MicroRNAs[J]. China Biotechnology, 2013, 33(1): 1-7.
[15] FAN Yong, LUO Yu-mei, CHEN Xin-jie, SUN Xiao-fang. Generation of Human β-thalassemia Induced Pluripotent Stem Cells Under Feeder-free and Xeno-free Conditions[J]. China Biotechnology, 2012, 32(6): 69-73.